Vol. 17
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-03-19
Propagation Factor and Path Loss Simulation Results for Two Rough Surface Reflection Coefficients Applied to the Microwave Ducting Propagation Over the Sea
By
Progress In Electromagnetics Research M, Vol. 17, 151-166, 2011
Abstract
The performance assessment of maritime microwave communications and radar systems requires accounting simultaneously for the non-homogeneous propagation medium over the sea and the rough sea surface scattering. The tropospheric ducting, specific for over water propagation, is one of the most difficult to treat propagation mechanisms. The proposed work combines a recently published in the literature phase correction, responsible for the shadowing effects, to the Ament rough surface reflection coefficient and the Parabolic Equation method (as implemented in the Advanced Propagation Model) to simulate the microwave propagation over the sea under evaporation duct conditions. Propagation factor and path loss results calculated for phase-corrected Ament, non-phase-corrected Ament and the other widely used, Miller-Brown, rough surface reflection coefficient are compared and discussed. The main effects from the accounting of the shadowing result in the shift of the interference minima and maxima of the propagation factor, changes in the path loss pattern and destruction of the trapping property of the duct.
Citation
Irina Sirkova, "Propagation Factor and Path Loss Simulation Results for Two Rough Surface Reflection Coefficients Applied to the Microwave Ducting Propagation Over the Sea," Progress In Electromagnetics Research M, Vol. 17, 151-166, 2011.
doi:10.2528/PIERM11020602
References

1. ITU-R P.453-9 "The radio refractive index: Its formula and refractivity data,", Vol. 27, ITU, 2003.

2. Kerr, D. E., Propagation of Short Radio Waves, Peninsula Publishing, Los Altos, 1988.
doi:10.1175/2008JAMC1961.1

3. Lopez, P. H., "A 5-yr 40-km-resolution global climatology of superrefraction for ground-based weather radars," J. Appl. Meteor. Climatol., Vol. 48, 89-110, Jan. 2009.
doi:10.1109/8.387177

4. Anderson, K. D., "Radar detection of low-altitude targets in a maritime environment," IEEE Trans. Antennas Propag., Vol. 43, No. 6, 609-613, Jun. 1995.

5. Woods, G. S., A. J. Kerans, and D. L. Maskell, "Simulated angle-of-arrival measurements for an over ocean microwave radio link," Proc. URSI Commission F Triennium Open Symposium, 200-207, Cairns, Australia, Jun. 2004.
doi:10.1109/TAP.2006.882163

6. Barrios, A. E., K. Anderson, and G. Lindem, "Low altitude propagation effects --- A validation study of the advanced propagation model (APM) for mobile radio applications," IEEE Trans. Antennas Propag., Vol. 54, No. 10, 2869-2877, Oct. 2006.
doi:10.1002/mop.20314

7. Sirkova, I. and M. Mikhalev, "Parabolic-equation-based study of ducting effects on microwave propagation," J. Microw. Opt. Technol. Letters, Vol. 42, No. 5, 390-394, Sep. 2004.

8. Gunashekar, S. D., E. M. Warrington, D. R. Siddle, and P. Valtr, "Signal strength variations at 2 GHz for three sea paths in the British channel islands: Detailed discussion and propagation modeling," Radio Sci., Vol. 42, RS4020, Aug. 2007, doi: 10.1029/2006RS003617.
doi:10.1175/1520-0450(1997)036<0193:ANMOTO>2.0.CO;2

9. Babin, S. M., G. S. Young, and J. A. Carton, "A new model for the oceanic evaporation duct," J. Appl. Meteor., Vol. 36, No. 3, 193-204, Mar. 1997.

10. Von Engeln, A. and J. Teixeira, "A ducting climatology derived from ECMWF global analysis fields," J. Geophys. Res., Vol. 109, D18104, Sep. 2004, doi: 10.1029/2003JD004380.

11. ITU-R P.452-11 "Prediction procedure for the evaluation of microwave interference between stations on the surface of the earth at frequencies above about 0.7 GHz,", 38, ITU, 2003.
doi:10.1007/s11277-005-0745-0

12. Milas, V. F. and P. H. Constantinou, "Interference environment between high altitude platform networks (HAPN), geostationary (GEO) satellite and wireless terrestrial systems," Wireless Personal Communications, Vol. 32, No. 3-4, 257-274, Feb. 2005.
doi:10.1029/91RS00109

13. Kuttler, J. R. and G. D. Dockery, "Theoretical description of the parabolic approximation/fourier split-step method of representing electromagnetic propagation in the troposphere," Radio Sci., Vol. 26, No. 2, 381-393, Mar.-Apr. 1991.
doi:10.1049/PBEW045E

14. Levy, M., Parabolic Equation Methods for Electromagnetic Wave Propagation , The Institution of Electrical Engineers, 2000.
doi:10.1109/8.833076

15. Donohue, D. J. and J. R. Kuttler, "Propagation modeling over terrain using the parabolic wave equation," IEEE Trans. Antennas Propag., Vol. 48, No. 2, 260-277, Feb. 2000.
doi:10.1109/8.272306

16. Barrios, A., "A terrain parabolic equation model for propagation in the troposphere," IEEE Trans. Antennas Propag., Vol. 42, No. 1, 90-98, Jan. 1994.
doi:10.1080/02726340500486484

17. Sirkova, I. and M. Mikhalev, "Parabolic wave equation method applied to the tropospheric ducting propagation problem --- A survey," Electromagnetics, Vol. 26, No. 2, 155-173, Feb. 2006.
doi:10.1109/JRPROC.1953.274171

18. Ament, W. S., "Toward a theory of reflection by a rough surface," Proc. IRE, Vol. 41, No. 1, 142-146, Jan. 1953.

19. Miller, A. R., R. M. Brown, and E. Vegh, "New derivation for the rough surface reflection coefficient and for the distribution of sea-wave elevations," IEE Proc. Microwaves, Optics and Antennas, Vol. 131, Part H, No. 2, 114-116, Apr. 1984.
doi:10.1109/TAP.2006.872669

20. Freund, D. E., N. E. Woods, H.-C. H. Ku, and R. S. Awadallah, "Forward radar propagation over a rough sea surface: A numerical assessment of the Miller-Brown approximation using a horizontally polarized 3-GHz line source," IEEE Trans. Antennas Propag., Vol. 54, No. 4, 1292-1304, Apr. 2006.
doi:10.1109/TAP.2008.919177

21. Hristov, T. S., K. D. Anderson, and C. A. Friehe, "Scattering properties of the ocean surface: The Miller-Brown-Vegh model revisited," IEEE Trans. Antennas Propag., Vol. 56, No. 4, 1103-1109, Apr. 2008.
doi:10.1080/17455030802033895

22. Freund, D. E., N. E. Woods, H.-C. Ku, and R. S. Awadallah, "The effects of shadowing on modelling forward radar propagation over a rough sea surface," Waves in Random and Complex Media, Vol. 18, No. 3, 387-408, Aug. 2008.
doi:10.2528/PIER05090101

23. Fabbro, V., C. Bourlier, and P. F. Combes, "Forward propagation modelling above Gaussian rough surfaces by the parabolic wave equation: Introduction of the shadowing effect," Progress In Electromagnetics Research, Vol. 58, 243-269, 2006.

24. Barrios, A. E. and W. L. Patterson, "Advanced propagation model (APM) Computer software configuration item (CSCI) documents," Space and Naval Warfare Systems Command Tech., Doc. 3145, 479, San Diego, CA, 2002.

25. Awadallah, R. S., "Rough surface scattering and propagation over rough terrain in ducting environments,", Doctoral Dissertation, 189, Virginia Polytechnic Institute and State University, Blacks-burg, Virginia, 1998.
doi:10.1109/MAP.2010.5586576

26. Apaydin, G. and L. Sevgi, "The split-step-fourier and finite-element based parabolic-equation propagation prediction tools: Canonical tests, systematic comparisons, and calibration," IEEE Antennas Propag. Magazine, Vol. 52, No. 3, 66-79, Jun. 2010.
doi:10.1109/8.546245

27. Dockery, G. D. and J. R. Kuttler, "An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation," IEEE Trans. Antennas Propag., Vol. 44, No. 12, 1592-1599, Dec. 1996.

28. Recommendations and Reports of the CCIR "Propagation in non-ionized media," CCIR XVth Plenary Assembly, Vol. 5, ITU, Geneva, Dubrovnik, 1986.

29. Rotheram, S., "Radiowave propagation in the evaporation duct," Marconi Review, Vol. 37, No. 192, 18-40, 1974.

30. Paulus, R. A. and K. D. Anderson, "Application of an evaporation duct climatology in the littoral," Proc. Battlespace Atmospheric and Cloud Impacts on Military Operations, BACIMO, 1-9, Fort Collins, Colorado, Apr. 2000.
doi:10.1109/TGRS.2004.826783

31. Smith Jr., J. R., S. J. Russell, B. E. Brown, P. M. Haldeman Jr., D. D. Hayden, D. G. Morgan, R. D. Pierce, J. W. Shan "Electromagnetic forward-scattering measurements over a known, controlled sea surface at low grazing," IEEE Trans. Geosci. Remote Sensing, Vol. 42, No. 6, 1197-1207, Jun. 2004.
doi: --- Either ISSN or Journal title must be supplied.