Vol. 115
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-03-25
Scattering Analysis of Periodic Arrays Using Combined Cbf/P-FFT Method
By
Progress In Electromagnetics Research, Vol. 115, 131-146, 2011
Abstract
In this paper, an improved CBFM/p-FFT algorithm is presented, which can be applied to solve electromagnetic scattering problems of large-scale periodic composite metallic/dielectric arrays, even when the array has electrically small periodicity or separating distance. Using characteristic basis function method (CBFM), scattering characteristics of any inhomogeneous targets can be represented by special responses derived from a set of incident plane waves (PWs). In order to reserve the dominant scattering characteristics of the targets and remove the redundancy of the overfull responses, a singular value decomposition (SVD) procedure is applied, then, new series of basis functions are built based on the left singular vectors after SVD whose corresponding singular values beyond a predefined threshold. However, the algorithm of CBFM combined with method of moments (MoM) still requires a lot of memory and CPU resources to some large scale problems, so the precorrected-fast Fourier transform (p-FFT) method is applied based on the novel built basis functions, with which, the required memory and solve time for solution can be reduced in an extraordinary extent. For a near correction technique is applied to process the interactions between cells placed within a distance less than a predefined near-far field threshold, arrays with electrically small periodicity can be analyzed accurately. Moreover, the incomplete LU factorization with thresholding (ILUT) preconditioner is applied to improve the condition number of the combined algorithm, which improves the convergence speed greatly.
Citation
Ke Xiao, Fei Zhao, Shun-Lian Chai, Jun-Jie Mao, and Joshua Le-Wei Li, "Scattering Analysis of Periodic Arrays Using Combined Cbf/P-FFT Method," Progress In Electromagnetics Research, Vol. 115, 131-146, 2011.
doi:10.2528/PIER11020601
References

1. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 2008.

2. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

3. Buonanno, A., M. D'Urso, M. Cicolani, and S. Mosca, "Large phased arrays diagnostic via distributional approach," Progress In Electromagnetics Research, Vol. 92, 153-166, 2009.
doi:10.2528/PIER09031704

4. Watanabe, K. and K. Yasumoto, "Accuracy improvement of the fourier series expansion method for Floquet-mode analysis of photonic crystal waveguides," Progress In Electromagnetics Research, Vol. 92, 209-222, 2009.
doi:10.2528/PIER09032704

5. Bahadori, H., H. Alaeian, and R. Faraji-Dana, "Computation of periodic Green's functions in layered media using complex images technique," Progress In Electromagnetics Research, Vol. 112, 225-240, 2011.

6. Guo, J. L., J. Y. Li, and Q. Z. Liu, "Analysis of antenna array with arbitrarily shaped radomes using fast algorithm based on VSIE," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1399-1410, 2006.
doi:10.1163/156939306779276811

7. Shi, Y., X. Luan, J. Qin, C. J. Lv, and C. H. Liang, "Multilevel Green's function interpolation method solution of volume-surface integral equation for mixed conducting/bi-isotropic objects," Progress In Electromagnetics Research, Vol. 107, 239-252, 2010.
doi:10.2528/PIER10060209

8. Thiele, G. A. and T. H. Newhouse, "A hybrid technique for combining moment methods with the geometrical theory of diffraction," IEEE Trans. Antennas Propagat., Vol. 23, No. 1, 62-69, Jan. 1975.
doi:10.1109/TAP.1975.1141004

9. Lertwiriyaprapa, T., P. H. Pathak, and J. L. Volakis, "An approximate UTD ray solution for the radiation and scattering by antennas near a junction between two different thin planar material slab on ground plane," Progress In Electromagnetics Research, Vol. 102, 227-248, 2010.
doi:10.2528/PIER09111809

10. Eibert, T. F., Ismatullah, E. Kaliyaperumal, and C. H. Schmidt, "Inverse equivalent surface current method with hierarchical higher order basis functions, full probe correction and multi-level fast multipole acceleration," Progress In Electromagnetics Research, Vol. 106, 377-394, 2010.
doi:10.2528/PIER10061604

11. Suter, E. and J. Mosig, "A subdomain multilevel approach for the MoM analysis of large planar antennas," Microwave Opt. Technol. Lett., Vol. 26, No. 4, 270-277, Aug. 2000.
doi:10.1002/1098-2760(20000820)26:4<270::AID-MOP20>3.0.CO;2-C

12. Du, P., B. Z. Wang, H. Li, and G. Zheng, "Scattering analysis of large-scale periodic structures using the sub-entire domain basis function method and characteristic function method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2085-2094, 2007.
doi:10.1163/156939307783152957

13. Gan, H. and W. C. Chew, "Discrete BCG-FFT algorithm for solving 3D inhomogeneous scatterer problems," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 10, 1339-1357, 1995.

14. Brandfass, M. and W. C. Chew, "A multilevel fast multipole based approach for efficient reconstruction of perfectly conducting scatterers," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 1, 81-106, 2001.
doi:10.1163/156939301X00670

15. Taboada, J. M., M. G. Araújo, J. M. Bértolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603

16. Ling, F., C. F. Wang, and J. M. Jin, "Application of adaptive integral method to scattering and radiation analysis of arbitrarily shaped planar structures," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 8, 1021-1037, 1998.
doi:10.1163/156939398X01268

17. Nie, X. C., L. W. Li, and N. Yuan, "Precorrected-FFT algorithm for solving combined field integral equations in electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 8, 1171-1187, 2002.
doi:10.1163/156939302X00697

18. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Trans. Computer-aided Design of Integrated Circuits and Systems, Vol. 16, No. 10, 1059-1072, Oct. 1997.
doi:10.1109/43.662670

19. Yuan, N., T. S. Yeo, X. C. Nie, L. W. Li, and Y. B. Gan, "Analysis of scattering from composite conducting and dielectric targets using the precorrected-FFT algorithm," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 3, 499-515, 2003.
doi:10.1163/156939303767869026

20. Yuan, N., X. C. Nie, Y. B. Gan, T. S. Yeo, and L. W. Li, "Accurate analysis of conformal antenna arrays with finite and curved frequency selective surfaces," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1745-1760, 2007.

21. Lucente, E., A. Monorchio, and R. Mittra, "An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. 56, No. 4, 999-1007, Apr. 2008.
doi:10.1109/TAP.2008.919166

22. Laviada, J., R. G. Ayestarán, M. R. Pino, and F. Las-Heras Andrés R. Mittra, "Synthesis of phased arrays in complex environments with the multilevel characteristic basis function method," Progress In Electromagnetics Research, Vol. 92, 347-360, 2009.
doi:10.2528/PIER09041801

23. Wan, J. X. and C. H. Liang, "A fast analysis of scattering from microstrip antennas over a wide band," Progress In Electromagnetics Research, Vol. 50, 187-208, 2005.
doi:10.2528/PIER04052801

24. Hu, L. and L. W. Li, "CBFM-based p-FFT method: A new algorithm for solving large-scale finite periodic arrays scattering problems," APMC: Asia Pacific Microwave Conference, 88-91, 2009.

25. Hu, L., L. W. Li, and R. Mittra, "Electromagnetic scattering by finite periodic arrays using the characteristic basis function and adaptive integral methods," IEEE Trans. Antennas Propagat., Vol. 58, No. 9, 3086-3090, Sep. 2010.
doi:10.1109/TAP.2010.2052563

26. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley-Interscience, 1989.

27. Saad, Y., "A dual threshold incomplete LU preconditioner," Numerical and Linear Algebra and its Applications, Vol. 1, No. 4, 387-402, 1994.
doi:10.1002/nla.1680010405

28. Saad, Y., "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIME J. Sci. Stat. Comput., Vol. 7, No. 3, 856-869, 1986.
doi:10.1137/0907058