Vol. 114
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-03-14
Detection of Gas Concentration by Correlation Spectroscopy Using a Multi-Wavelength Fiber Laser
By
Progress In Electromagnetics Research, Vol. 114, 469-479, 2011
Abstract
A correlation spectroscopy (COSPEC) based on a multi-wavelength fiber laser is first proposed for the detection of gas concentration. The lasing wavelengths are selected to match several characteristic absorption peaks of the gas under test, and the gas concentration is easily measured by correlating it with the reference gas. The present method is immune from the instability of the light source and the influence of other gases. The concentration measurement of C2H2 is demonstrated in the experiment in its near-infrared dominant absorption region. The technique has prospects for simultaneous detection of multiple gases, and the measurement of mixed gases of C2H2 and CO2 is also analyzed.
Citation
Binhao Wang, Gabriel Somesfalean, Liang Mei, Haojiang Zhou, Chunsheng Yan, and Sailing He, "Detection of Gas Concentration by Correlation Spectroscopy Using a Multi-Wavelength Fiber Laser," Progress In Electromagnetics Research, Vol. 114, 469-479, 2011.
doi:10.2528/PIER11013106
References

1. Liu, S. C., Z. W. Yin, L. Zhang, X. F. Chen, L. Gao, and J. C. Cheng, "Dual-wavelength fbg laser sensor based on photonic generation of radio frequency demodulation technique," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2177-2185, 2009.
doi:10.1163/156939309790109252

2. Fu, X., C. Cui, and S. C. Chan, "Optically injected semiconductor laser for photonic microwave frequency mixing in radio-over-fiber," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 849-860, 2010.
doi:10.1163/156939310791285236

3. Yang, B., X. F. Jin, X. M. Zhang, H. Chi, and S. L. Zheng, "Photonic generation of 60 GHz millimeter-wave by frequency quadrupling based on a mode-locking soa fiber ring laser with a low modulation depth MZM," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1773-1782, 2010.

4. Bergamaschi, P., M. Schupp, and G. W. Harris, "High-precision direct measurements of 13CH4/12CH4 and 12CH3D/12CH4 ratios in atmospheric methane sources by means of a long-path tunable diode laser absorption spectrometer," Appl. Optics, Vol. 33, 7704-7716, 1994.
doi:10.1364/AO.33.007704

5. Roller, C., K. Namjou, J. D. Jeffers, M. Camp, A. Mock, P. J. McCann, and J. Grego, "Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: Application in monitoring respiratory inflammation," Appl. Optics, Vol. 41, 6018-6029, 2002.
doi:10.1364/AO.41.006018

6. Guan, Z., M. Lewander, and S. Svanberg, "Quasi zero-background tunable diode laser absorption spectroscopy employing a balanced Michelson interferometer," Opt. Express, Vol. 16, 21714-21720, 2008.
doi:10.1364/OE.16.021714

7. Galais, A., G. Fortunato, and P. Chavel, "Gas concentration measurement by spectral correlation: Rejection of interferent species ," Appl. Optics, Vol. 24, 2127-2134, 1985.
doi:10.1364/AO.24.002127

8. Sandsten, J., H. Edner, and S. Svanberg, "Gas imaging by infrared gas-correlation spectrometry," Opt. Lett., Vol. 21, 1945-1947, 1996.
doi:10.1364/OL.21.001945

9. Reid, J., J. Shewchun, B. K. Garside, and E. A. Ballik, "High sensitivity pollution detection employing tunable diode lasers," Appl. Optics, Vol. 17, 300-307, 1978.
doi:10.1364/AO.17.000300

10. Somesfalean, G., M. SjÄoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, "Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers ," Appl. Phys. Lett., Vol. 86, 184102, 2005.
doi:10.1063/1.1921351

11. Lou, X. T., G. Somesfalean, F. Xu, Y. G. Zhang, and Z. G. Zhang, "Gas sensing by tunable multimode diode laser using correlation spectroscopy," Appl. Phys. B, Vol. 93, 671-676, 2008.
doi:10.1007/s00340-008-3167-3

12. Lou, X. T., G. Somesfalean, B. Chen, and Z. G. Zhang, "Oxygen measurement by multimode diode lasers employing gas correlation spectroscopy," Appl. Optics, Vol. 48, 990-997, 2009.
doi:10.1364/AO.48.000990

13. Zhang, Z. G., X. T. Lou, G. Somesfalean, B. Chen, Y. G. Zhang, H. Wang, S. Wu, and Y. Qin, "Simultaneous detection of multiple gas species by correlation spectroscopy using a multi-mode diode laser," Opt. Lett., Vol. 35, 1749-1751, 2010.
doi:10.1364/OL.35.002143

14. Macho, S., R. Boque, M. S. Larrechi, and F. X. Rius, "Multivariate determination of several compositional parameters related to the content of hydrocarbon in naphtha by MIR spectroscopy," Analyst, Vol. 124, 1827-1831, 1999.
doi:10.1039/a905693i

15. Forina, M., S. Lanteri, M. C. Cerrato Oliveros, and C. Pizarro Millan, "Selection of useful predictors in multivariate calibration," Anal. Bioanal. Chem., Vol. 380, 397-418, 2004.
doi:10.1007/s00216-004-2768-x

16. Barton, F. E., J. D. Bargeron, G. R. Gamble, D. L. Mcalister, and E. Hequet, "Analysis of Sticky Cotton by Near-Infrared Spectroscopy," Appl. Spectrosc., Vol. 59, 1388-1392, 2005.
doi:10.1366/000370205774783214

17. Liau, J.-J., N.-H. Sun, S.-C. Lin, R.-Y. Ro, J.-S. Chiang, C.-L. Pan, and H.-W. Chang, "A new look at numerical analysis of uniform fiber bragg gratings using coupled mode theory," Progress In Electromagnetics Research, Vol. 93, 385-401, 2009.
doi:10.2528/PIER09031102

18. Chen, B., S. L. Zheng, X. M. Zhang, X. F. Jin, and H. Chi, "Simultaneously realizing PM-IM conversion and e±ciency improvement of fiber-optic links using FBG," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 161-170, 2009.
doi:10.1163/156939309787604472

19. Sandsten, J., P. Wiebring, H. Edner, and S. Svanberg, "Realtime radiation gas-correlation imaging employing thermal," Opt. Express, Vol. 6, 92-103, 2000.
doi:10.1364/OE.6.000092

20. Dakin, J. P., M. J. Gunning, P. Chambers, and Z. J. Xin, "Detection of gases by correlation spectroscopy," Sens. Actuators. B, Vol. 90, 124-131, 2003.
doi:10.1016/S0925-4005(03)00043-1

21. Ahmad, H., A. H. Sulaiman, S. Shahi, and S. W. Harun, "SOA-based multi-wavelength laser using fiber Bragg gratings," Laser Phys., Vol. 19, 1002-1005, 2009.
doi:10.1134/S1054660X09050193

22. , , , http://www.camo.com/resources/principal-component-analysis.html.
doi:10.2528/PIER09073004

23. , , , http://www.camo.com/resources/simca.html.

24. , , , http://www.cfa.harvard.edu/HITRAN/.

25. Chan, Y. K., M. Y. Chua, and V. C. Koo, "Sidelobes reduction using simple two and tri-stages non linear frequency modulation (NLFM) ," Progress In Electromagnetics Research, Vol. 98, 33-52, 2009.