Vol. 31
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-06-23
Analysis and Design of Thin Planar Absorbing Structure Using Jerusalem Cross Slot
By
Progress In Electromagnetics Research B, Vol. 31, 261-281, 2011
Abstract
A detailed analysis and design of thin planar absorbing structure using Jerusalem cross slot (JCS) is presented in this paper. Based on uniplanar compact high-impedance surface characteristics, the resistance loss material layer can be directly attached to the surface of JCS structure, thus absorbing electromagnetic waves effectively. The improved design is characterized by its wider bandwidth and adjustable range. The absorption frequency band can be flexibly adjusted by the slot parameters. The influences of various structure parameters of JCS, including incident wave polarization and variation of incident angles on the absorption properties, are analyzed to provide guidance on theoretical design for practical application. The loaded resistance can be adjusted to obtain the optimum absorbing performance. The validation and effectiveness of the proposed design are conducted by using X-band waveguide simulation and measurement.
Citation
Haixia Liu, Bofeng Yao, Long Li, and Xiao-Wei Shi, "Analysis and Design of Thin Planar Absorbing Structure Using Jerusalem Cross Slot," Progress In Electromagnetics Research B, Vol. 31, 261-281, 2011.
doi:10.2528/PIERB11012705
References

1. Fante, R. L. and M. T. McCormack, "Reflection properties of the salisbury screen," IEEE Trans. Antennas and Propagat., Vol. 36, No. 10, 1443-1454, 1988.
doi:10.1109/8.8632

2. Tennant, A. and B. Chamber, "A single-layer tuneable microwave absorber using an active FSS," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 1, 46-47, 2004.
doi:10.1109/LMWC.2003.820639

3. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics ," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

4. John, S., "Strong localization of photons in certain disorded dielectric superlattices ," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

5. Johnson, S. G. and J. D. Joannopuulos, Photonic Crystals: The Road from Theory to Practice, Kluwer Academic Publishers, Norwell, 2002.

6. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, Oct. 2000.
doi:10.1103/PhysRevLett.85.3966

7. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative refractive index of refraction," Science, Vol. 292, 77-79, Apr. 2002.

8. Yang, F. R., K. P. Ma, and T. Itoh, "A uniplanar compact photonic band-gap (UC-PBG) structrue and its applications for microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 8, 1509-1514, 1999.
doi:10.1109/22.780402

9. Sieverpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, 2059-2074, Nov. 1999.

10. Li, L., Q. Chen, Q. W. Yuan, C. H. Liang, and K. Sawaya, "Surface-wave suppression band gap and plane-wave reflection phase band of mushroomlike photonic band gap structures," Journal of Applied Physics, Vol. 103-023513, Jan. 2008.
doi:10.1063/1.2903454

11. Yang, F. and Y. Rahmat-Samii, "Refltion phase characteriza tions of the EBG ground plane for low profile wire antenna applications," IEEE Trans. Antennas Propagat., Vol. 51, 2691-2703, Oct. 2003.

12. Li, L., C. H. Liang, and C.-H. Chan, "Waveguide end-slot phased array antenna integrated with electromagnetic bandgap structure," Journal of Electromagnetic Waves and Application, Vol. 21, No. 2, 161-174, 2007.
doi:10.1163/156939307779378826

13. Seman, F. C., R. Cahill, V. F. Fusco, and G. Goussetis, "Design of a Salisbury screen absorber using frequency selective surfaces to improve bandwidth and angular stability performance ," IET Microw. Antennas Propag., Vol. 5, No. 2, 149-156, 2011.
doi:10.1049/iet-map.2010.0072

14. Yao, B., L. Li, and C. H. Liang, "An improved design of absorbing structure with Jerusalem cross slot," The 9th International Symposium on Antennas, Propagation, and EM Theory, Guangzhou , China, Nov. 29-Dec. 2, 2010.

15. Engheta, N., "Thin absorbing screens using metamaterial surfaces," IEEE-APS International Symposium, San Antonio, Texas, Jun. 16-21, 2002.

16. Kern, D. and D. Werner, "A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers," Microwave Opt. Tech. Lett., Vol. 38, No. 1, 61-64, Jul. 2003.
doi:10.1002/mop.10971

17. Gao, Q., Y. Yin, D. B. Yan, and N. C. Yuan, "Application of metamaterials to ultra-thin radar-absorbing material design," Electronics Letters, Vol. 14, No. 17, 1311-1313, 2005.

18. Kazemzadeh, A. and A. Karlsson, "On the absorption mechanism of ultra thin absorbers," IEEE Trans. Antennas and Propagat., Vol. 58, No. 10, 3310-3315, 2010.
doi:10.1109/TAP.2010.2055779

19. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Trans. Antennas and Propagat., Vol. 58, No. 5, 1551-1558, 2010.
doi:10.1109/TAP.2010.2044329

20. Luukkonen, O., F. Costa, A. Monorchio, and S. A. Tretyakov, "A thin electromagnetic absorber for wide incidence angles and both polarizations," IEEE Trans. Antennas and Propagat., Vol. 57, No. 10, 3119-3125, Oct. 2009.
doi:10.1109/TAP.2009.2028601

21. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle ," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

22. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

23. Munir, A. and V. Fusco, "Effect of surface resistor loading on high-impedance surface radar absorber return loss and bandwidth," Microwave and Optical Technology Letters, Vol. 51, No. 7, 1773-1775, 2009.
doi:10.1002/mop.24454

24. Rozanov, K. N., "Ultimate thickness to bandwidth ratio of radar absorbers," IEEE Trans. Antennas and Propagat., Vol. 48, No. 8, 1230-1234, 2000.
doi:10.1109/8.884491

25. High Frequency Structure Simulator, , Ansys Corporation.