Vol. 114
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-03-02
An Efficient Hybrid Technique for Analysis of the Electromagnetic Field Distribution Inside a Closed Environment
By
Progress In Electromagnetics Research, Vol. 114, 301-315, 2011
Abstract
This paper presents an efficient hybrid simulation technique for analysis of the electromagnetic field interactions between multi-transmitters and receivers located within a closed environment. The Method of Moments/circuit method is first used for modeling of the transceivers and their nearby surrounding to obtain the equivalent sources/receivers. Then, an approach that combines the asymptotic method and the ray tracing technique is deployed to calculate the long-distance coupling between a pair of transmitter and receiver. The acceleration algorithms for ray tracing have been developed to deal with more complex scenarios. The seamless combination between the circuit, numerical, and asymptotic approaches is the key to get accurate simulation results. Several numerical examples and experimental results are presented to demonstrate the efficiency of the proposed technique.
Citation
Viet Phuong Bui, Xing-Chang Wei, Er Ping Li, and Wei-Jiang Zhao, "An Efficient Hybrid Technique for Analysis of the Electromagnetic Field Distribution Inside a Closed Environment," Progress In Electromagnetics Research, Vol. 114, 301-315, 2011.
doi:10.2528/PIER11012101
References

1. Nguyen, T. X., S. V. Koppen, J. J. Ely, G. N. Szatkowski, J. J. Mielnik, and M. T. P. Salud, "Small aircraft RF interference path loss," Proc. IEEE International Symposium on Electromagnetic Compatibility, 2007.

2. Debono, C. J. and R. Farrugia, "Optimization of the UMT network radio coverage on-board an aircraft," Proc. of the 2008 IEEE Aerospace Conference, Mar. 2008.

3. Zhai, H. Q., S. Y. Jung, and M. Y. Lu, "Wireless communication in boxes with metallic enclosure based on time-reversal ultra-wideband technique: A full-wave numerical study," Progress In Electromagnetics Research, Vol. 101, 63-74, 2010.
doi:10.2528/PIER09112502

4. Constantine, A. Balanis, Antenna Theory: Analysis and Design,, 2nd Edition, John Wiley & Sons, 1997.

5. Chew, W. C., Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, MA, 2001.

6. Sahalos, J. N. and G. A. Thiele, "On the application of the GTD-MM technique and its limitations," IEEE Transactions on Antennas and Propagation, Vol. 29, 780786, Sep. 1981.
doi:10.1109/TAP.1981.1142667

7. Bouche, D. P., F. A. Molinet, and R. Mittra, "Asymptotic and hybrid techniques for electromagnetic scattering," Proc. IEEE, Vol. 81, 1658-1684, Dec. 1993.
doi:10.1109/5.248956

8. Chou, H.-T. and H.-T. Hsu, "Hybridization of simulation codes based on numerical high and low frequency techniques for the efficient antenna design in the presence of electrically large and complex structures," Progress In Electromagnetics Research, Vol. 78, 173-187, 2008.
doi:10.2528/PIER07091104

9. Medgyesi-Mitschang, L. N. and D.-S. Wang, "Hybrid methods in computational electromagnetics: A review," Computer Physics Communications, Vol. 68, 76-94, 1991.
doi:10.1016/0010-4655(91)90194-P

10. Hsu, H.-T., F.-Y. Kuo, and H.-T. Chou, "Convergence study of current sampling profiles for antenna design in the presence of electrically large and complex platforms using FIT-UTD hybridization approach ," Progress In Electromagnetics Research, Vol. 99, 195-209, 2009.
doi:10.2528/PIER09092404

11. Wei, X. C. and E. P. Li, "Efficient EMC simulation of enclosures with apertures residing in an electrically large platform using the MM-UTD method," IEEE Trans. Electromagn. Compat., Vol. 47, No. 4, 717-722, Nov. 2005.
doi:10.1109/TEMC.2005.857361

12. Quijano, A. J. L. and G. Vecchi, "Field and source equivalence in source reconstruction on 3D surfaces," Progress In Electromagnetics Research, Vol. 103, 67-100, 2010.
doi:10.2528/PIER10030309

13. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

14. Araujo, M. G., J. M. Bertolo, F. Obelleiro, J. L. Rodriguez, J. M. Taboada, and L. Landesa, "Geometry based preconditioner for radiation problems involving wire and surface basis functions," Progress In Electromagnetics Research, Vol. 93, 29-40, 2009.
doi:10.2528/PIER09042104

15. Medgyesi-Mitschang, L. N. and J. M. Putnam, "Integral equation formulations for imperfectly conducting scatterers," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 2, Feb. 1985.
doi:10.1109/TAP.1985.1143560

16. Catedra, M. F. and J. Perez, Cell Planning for Wireless Communications, Artech House, Reading, MA, 1999.

17. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.

18. Lin, Z. W., X. J. Zhang, and G. Y. Fang, "Theoretical model of electromagnetic scattering from 3D multi-layer dielectric media with slightly rough surfaces," Progress In Electromagnetics Research, Vol. 96, 37-62, 2009.
doi:10.2528/PIER09061102

19. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of di®raction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, 1448-1461, Nov. 1974.

20. Luebbers, R. J., "Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 1, 70-76, Jan. 1984.
doi:10.1109/TAP.1984.1143189

21. Burnside, W. D. and K. W. Burgener, "High frequency scattering by a thin lossless dielectric slab," IEEE Transactions on Antennas and Propagation, Vol. 31, 104-110, Jan. 1983.
doi:10.1109/TAP.1983.1143019

22. Kim, H. and H. Lee, "Accelerated three dimensional ray tracing techniques using ray frustums for wireless propagation models," Progress In Electromagnetics Research, Vol. 96, 21-36, 2009.
doi:10.2528/PIER09072303

23. Foley, J. D., A. V. Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and Practice, 2nd Edition, Addison-Wesley, New York, 1996.

24. Zha, F.-T., S.-X. Gong, Y.-X. Xu, Y. Guan, and W. Jiang, "Fast shadowing technique for electrically large targets using Z-buffer," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 341-349, 2009.
doi:10.1163/156939309787604409

25. De Adana, F. S., O. G. Blanco, I. G. Diego, J. P. Arriaga, and M. F. Catedra, "Propagation model based on ray tracing for the design of personal communication systems in indoor environments," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 6, Nov. 2000.