Vol. 21
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-03-14
A Stub-Loaded Triple-Mode SIR for Novel High Selectivity Dual-Wideband Micostrip BPF Design
By
Progress In Electromagnetics Research Letters, Vol. 21, 169-176, 2011
Abstract
In this paper, a novel high selectivity dual-wideband microstrip bandpass filter (BPF) is proposed using two stub-loaded triple-mode stepped-impedance resonators (SIR) which are the same type but with different sizes. The SIR is formed by attaching one T-type open stub at the center plane and two identical short-circuited stubs symmetrically to stepped-impedance open microstrip line. And it can generate one odd mode approximatively determined by the stepped-impedance microstrip line and two even modes flexibly controlled by the loaded stubs. Either of the SIRs in this filter can not only separately generate one passband but also control the passband performance. Due to the intrinsic characteristics of the SIR, four transmission zeros can be created to improve the selectivity. A dual-wideband filter with the fractional bandwidth 14.9% for the first band from 3.09 GHz to 3.58 GHz and 10.2% for the second band from 4.99 GHz to 5.53 GHz is designed and fabricated. The filter is evaluated by experiment and simulation with good agreement.
Citation
Hong-Wei Deng, Bin Liu, Yong-Jiu Zhao, Xue-Shun Zhang, and Wen Chen, "A Stub-Loaded Triple-Mode SIR for Novel High Selectivity Dual-Wideband Micostrip BPF Design," Progress In Electromagnetics Research Letters, Vol. 21, 169-176, 2011.
doi:10.2528/PIERL11011702
References

1. Velazquez-Ahumada, M. D. C., J. Martel-Villagr, F. Medina, and F. Mesa, "Application of stub loaded folded stepped impedance resonators to dual band filter design," Progress In Electromagnetics Research, Vol. 102, 107-124, 2010.
doi:10.2528/PIER10011406

2. Chiou, Y.-C., P.-S. Yang, J.-T. Kuo, and C.-Y.Wu, "Transmission zero design graph for dual-mode dual-band filter with periodic stepped-impedance ring resonator," Progress In Electromagnetics Research, Vol. 108, 23-36, 2010.
doi:10.2528/PIER10071608

3. Xiao, J.-K. and H.-F. Huang, "New dual-band bandpass filter with compact SIR structure," Progress In Electromagnetics Research Letters, Vol. 18, 125-134, 2010.
doi:10.2528/PIERL10082202

4. Zhou, M. Q., X. H. Tang, and F. Xiao, "Compact dual band transversal bandpass filter with multiple transmission zeros and controllable bandwidths," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 6, 347-349, 2009.
doi:10.1109/LMWC.2009.2020007

5. Chen, Z.-X., X.-W. Dai, and C.-H. Liang, "Novel dual-mode dual-band bandpass filter using double square-loop structure," Progress In Electromagnetics Research, Vol. 77, 409-416, 2007.
doi:10.2528/PIER07082803

6. Zhao, L.-P., X.-W. Dai, Z.-X. Chen, and C.-H. Liang, "Novel design of dual-mode dual-band bandpass filter with triangular resonators," Progress In Electromagnetics Research, Vol. 77, 417-424, 2007.
doi:10.2528/PIER07090501

7. Liu, H. W., L. Shen, Z. C. Zhang, J. S. Lim, and D. Ahn, "Dual-mode dual-band bandpass filter using defected ground waveguide," Electronics Letters, Vol. 46, No. 13, 895-897, 2010.
doi:10.1049/el.2010.1034

8. Baik, J.-W., L. Zhu, and Y.-S. Kim, "Dual-mode dual-band bandpass filter using balun structure for single substrate configuration," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 1, 613-615, 2010.
doi:10.1109/LMWC.2010.2060184

9. Chin, K.-S. and J.-H. Yeh, "Dual-wideband bandpass filter usingshort-circuited stepped-impedance resonators," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 3, 155-157, 2009.
doi:10.1109/LMWC.2009.2013736

10. Deng, H.-W., Y.-J. Zhao, L. Zhang, X.-S. Zhang, and S.-P. Gao, "Compact quintuple-mode stub-loaded resonator and UWB filter," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 8, 438-440, 2010.
doi:10.1109/LMWC.2010.2049481

11. Wong, S. W. and L. Zhu, "Quadruple-mode UWB bandpass filter with improved out-of-band rejection," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 3, 152-154, 2009.
doi:10.1109/LMWC.2009.2013735

12. Athukorala, L. and D. Budimir, "Compact dual-mode open loop microstrip resonators and filters," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 11, 698-670, 2009.
doi:10.1109/LMWC.2009.2032003

13. Rosenberg, U. and S. Amari, "Novel coupling schemes for microwaveresonator filters," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 12, 2896-2902, 2002.
doi:10.1109/TMTT.2002.805171

14. Shen, W., X.-W. Sun, and W.-Y. Yin, "A novel microstrip filter using three-mode stepped impedance resonator (TSIR)," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 2, 774-776, 2009.
doi:10.1109/LMWC.2009.2033495