Vol. 114
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-03-08
Quasi-Elliptic Function Bandpass Filter with Upper Stopband Extension and High Rejection Level Using Cross-Coupled Stepped-Impedance Resonators
By
Progress In Electromagnetics Research, Vol. 114, 395-405, 2011
Abstract
Planar microstrip filters are designed to have a quasi-elliptic function passband and extended upper stopband with a rejection level of 40 or 50 dB. The design employs stepped-impedance resonators in a compact 2×2 cross coupled configuration. The geometric parameters of the resonators are planned to shift the third resonance as high as possible, and then the transmission zeros created by the structure are devised to suppress the second resonance, so that a wide upper stopband up to more than 4.5 times the passband frequency can be achieved. By employing the skew-symmetric input/output feeds, three transmission zeros in the frequency band of interest can be created. The leading two zeros are allocated on the both sides of the passband, generating a quasi-elliptic function response with enhanced roll-off rate in the transition bands, and the last zero incorporating with a zero created by anti-coupled-line at higher frequencies are employed to extend the rejection bandwidth. The measurement data agree very well with the simulation responses.
Citation
Jen-Tsai Kuo, Shao-Chan Tang, and Shu-Hsien Lin, "Quasi-Elliptic Function Bandpass Filter with Upper Stopband Extension and High Rejection Level Using Cross-Coupled Stepped-Impedance Resonators," Progress In Electromagnetics Research, Vol. 114, 395-405, 2011.
doi:10.2528/PIER11011002
References

1. Pozar, D. M., Microwave Engineering, 3 Ed., Wiley, 2005.

2. Kuo, J.-T. and M.-H. Wu, "Corrugated parallel-coupled line bandpass filters with multispurious suppression," IET --- Microwaves, Antennas, and Propagation, Vol. 1, No. 3, 718-722, Jun. 2007.
doi:10.1049/iet-map:20060130

3. Kuo, J.-T., S.-P. Chen, and M. Jiang, "Parallel-coupled microstrip filters with over-coupled end stages for suppression of spurious responses," IEEE Micow. Wirelss Compon. Lett., Vol. 13, No. 10, 440-442, Oct. 2003.

4. Kuo, J.-T. and H.-P. Lin, "Dual-band bandpass filter with improved performance in extended upper rejection band," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 4, 824-829, Apr. 2009.
doi:10.1109/TMTT.2009.2015040

5. Kuo, J.-T. and E. Shih, "Microstrip stepped-impedance resonator bandpass filter with an extended optimal rejection bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 5, 1554-1559, May 2003.
doi:10.1109/TMTT.2003.810138

6. Velazquez-Ahumada, M. D. C., J. Martel, F. Medina, and F. Mesa, "Design of a bandpass filter using stepped-impedance resonators with floating conductors," Progress In Electromagnetics Research, Vol. 105, 31-48, 2010.
doi:10.2528/PIER10042010

7. Chen, C.-F., T.-Y. Huang, and R.-B. Wu, "Design of microstrip bandpass filters with multiorder spurious-mode suppression," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 12, 3788-3793, Dec. 2005.
doi:10.1109/TMTT.2005.859869

8. Lin, S. C., P.-H. Deng, Y.-S. Lin, C.-H. Wang, and C.-H. Chen, "Wide-stopband microstrip bandpass filters using dissimilar quarter-wavelength stepped-impedance resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 3, 1011-1018, Mar. 2006.
doi:10.1109/TMTT.2005.864139

9. Tang, C.-W. and H.-H. Liang, "Parallel-coupled stacked SIRs bandpass filters with open-loop resonators for suppression of spurious responses," IEEE Micow. Wirelss Compon. Lett., Vol. 15, No. 11, 802-804, Nov. 2005.
doi:10.1109/LMWC.2005.859009

10. U-yen, K., E. J. Wollack, T. A. Doiron, J. Papapolymerou, and J. Laskar, "A planar bandpass filter design with wide stopband using double split-end stepped-impedance resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 3, 1237-1244, Mar. 2006.
doi:10.1109/TMTT.2005.864098

11. Wu, H.-W., S.-K. Liu, M.-H. Weng, and C.-H. Hung, "Compact microstrip bandpass filter with multispurious suppression," Progress In Electromagnetics Research, Vol. 107, 21-30, 2010.
doi:10.2528/PIER10061601

12. Dai, G.-L. and M.-Y. Xia, "Novel miniaturized bandpass filters using spiral-shaped resonators and window feed structures," Progress In Electromagnetics Research, Vol. 100, 235-243, 2010.
doi:10.2528/PIER09120401

13. Wen, S. and L. Zhu, "Numerical synthesis design of coupled resonator filters," Progress In Electromagnetics Research, Vol. 92, 333-346, 2009.
doi:10.2528/PIER09041102

14. Huang, C.-Y., M.-H. Weng, C.-S. Ye, and Y.-X. Xu, "A high band isolation and wide stopband diplexer using dual-mode stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 100, 299-308, 2010.
doi:10.2528/PIER09112701

15. Zhang, L., Z.-Y. Yu, and S.-G. Mo, "Novel planar multimode bandpass filters with radial-line stubs," Progress In Electromagnetics Research, Vol. 101, 33-42, 2010.
doi:10.2528/PIER09121303

16. Mo, S.-G., Z.-Y. Yu, and L. Zhang, "Design of triple-mode bandpass filter using improved hexagonal loop resonator," Progress In Electromagnetics Research, Vol. 96, 117-125, 2009.
doi:10.2528/PIER09080304

17. Kuo, J.-T., M.-J. Maa, and P.-H. Lu, "A microstrip elliptical function filter with compact miniaturized hairpin resonators," IEEE Microw. Guided Wave Lett., Vol. 10, No. 3, 94-95, Mar. 2000.
doi:10.1109/75.845708

18. Tsai, C.-M., S.-Y. Lee, and C.-C. Tsai, "Performance of a planar filter using a 0º feed structure," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 10, 2362-2367, Oct. 200.
doi:10.1109/TMTT.2002.803421

19. Tsai, C.-M., S.-Y. Lee, and H.-M. Lee, "Transmission-line filters with capacitively loaded coupled lines," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 5, 1517-1524, May 2003.
doi:10.1109/TMTT.2003.810133

20. IE3D simulator, Zeland Software Inc., Jan. 2002.