Vol. 21
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-02-25
A Broadband PIFA with Zeroth-Order Resonator Loading
By
Progress In Electromagnetics Research Letters, Vol. 21, 67-77, 2011
Abstract
A printed broadband planar inverted-F antenna (PIFA) with zeroth-order resonator (ZOR) loaded is proposed whose shorting strip of the PIFA is replaced by an inter-digital capacitor and thin inductive strip in series. The loaded inter-digital capacitor and thin inductive strip act as a shorting strip at the 3.1 GHz, which allows the antenna to maintain its regular performance. Around 2.0 GHz, the antenna with the inter-digital capacitor and thin inductive strip works on the zeroth-order resonance mode, which makes the physical size be independent of the wavelength. By merging the two modes, a broadband performance can be achieved. The size of the antenna is only 12.5 mm×7.81 mm×1.6 mm with single layer. The measured antenna bandwidth is 1.63 GHz (about 65%), total gain is above 2.5 dBi and the simulated radiation efficiency is over 90% in the working band. Especially the antenna has same direction of the radiation patterns in the broadband. In the end, the antenna with lumped elements loading is also discussed.
Citation
Hong-Ze Yu, and Qing-Xin Chu, "A Broadband PIFA with Zeroth-Order Resonator Loading," Progress In Electromagnetics Research Letters, Vol. 21, 67-77, 2011.
doi:10.2528/PIERL11010708
References

1. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 50, 2702-2712, 2002.
doi:10.1109/TMTT.2002.805197

2. Sanada, A., C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive index," IEEE Trans. Microw. Theory Tech., Vol. 52, 1252-1263, 2004.
doi:10.1109/TMTT.2004.825703

3. Sanada, A., C. Caloz, and T. Itoh, "Novel zeroth-order resonance in composite right/left-handed transmission line resonators," Proc. Asia-Pacic Microwave Conf., Vol. 3, 1588-1591, 2003.

4. Choi, J. and S. Lim, "Ultra-wideband power splitting/combining technique using zero-degree left-handed transmission lines," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 2119-2127, 2010.

5. Sanada, A., M. Kimura, I. Awai, C. Caloz, and T. Itoh, "A planar zeroth-order resonator antenna using a left-handed transmission line," Proc. Eur. Microw. Conf., Vol. 3, 1341-1344, 2004.

6. Choi, J. and S. Lim, "Frequency and radiation pattern reconfigurable small metamaterial antenna using its extraordinary zeroth-order resonance," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 2119-2127, 2008.

7. Dolatsha, N., M. Shahabadi, and R. Dehbashi, "Via-free cpw-based composite right/left-handed transmission line and a calibration approach to determine its propagation constant," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-12, 1599-1606, 2008.
doi:10.1163/156939308786390058

8. Zhou, H., S. Qu, Z. Pei, Y. Yang, J. Zhang, J. Wang, H. Ma, C. Gu, X. Wang, Z. Xu, W. Peng, and P. Bai, "A high-directive patch antenna based on all-dielectric near-zero-index metamaterial superstrates," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 10, 1387-1396, 2010.
doi:10.1163/156939310791958680

9. Yu, A., F. Yang, and A. Elsherbeni, "A dual band circularly polarized ring antenna based on composite right and left handed metamaterials," Progress In Electromagnetics Research, Vol. 78, 73-81, 2008.
doi:10.2528/PIER07082902

10. Si, L.-M. and X. Lv, "CPW-fed multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications," Progress In Electromagnetics Research, Vol. 83, 133-146, 2008.
doi:10.2528/PIER08050404

11. Antoniades, M. A. and G. V. Eleftheriades, "A broadband dual-mode monopole antenna using NRI-TL metamaterial loading," IEEE Antennas Wireless Propag. Lett., Vol. 8, 258-261, 2009.
doi:10.1109/LAWP.2009.2014402

12. Zhu, J., M. A. Antoniades, and G. V. Eleftheriades, "A compact tri-band monopole antenna with single-cell metamaterial loading," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1031-1038, 2010.
doi:10.1109/TAP.2010.2041317

13. Deng, S. M., C. L.Tsai, C. K. Yeh, S. S, and Bor, "CPW-fed PIFAS with a capacitively coupling slot for dual wide-band operations," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 721-733, 2010.
doi:10.1163/156939310791036467

14. Sanchez-Montero, R., S. Salcedo-Sanzand, J. A. Portilla-Figueras, and R. Langley, "Hybrid pifa-patch antenna optimized by evolutionary programming," Progress In Electromagnetics Research, Vol. 108, 221-234, 2010.
doi:10.2528/PIER10072804

15. Yang, C. W. and C. W. Jung, "Broad dual-band PIFA using self-complementary structure for DVB-H applications," Electron. Lett., Vol. 46, No. 4, 606-608, 2010.
doi:10.1049/el.2010.0512

16. Sim, D.-U. and J.-I. Choi, "A compact wideband modified planar inverted F antenna (PIFA) for 2.4/5-GHz WLAN applications," IEEE Antennas and Wireless Propag. Lett., Vol. 5, No. 1, 391-394, 2006.
doi:10.1109/LAWP.2006.881914

17. Park, J.-H., Y.-H. Ryu, J.-G. Lee, and J.-H. Lee, "Epsilon negative zeroth-order resonator antenna," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3710-3712, 2007.
doi:10.1109/TAP.2007.910505

18. Huang, J.-Q. and Q.-X. Chu, "Small ZOR antenna with high efficiency based on epsilon negative transmission line," Proc. of Int. Conf. on Microwave & Millimeter Wave Tech., 528-531, 2010 2010.

19. Bahl, I., Lumped Elements for RF and Microwave Circuits, Artech House, 2003.