Vol. 16
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-01-31
Wideband Dispersion Analysis of Waveguide Geometries Using Finite Sampled Data
By
Progress In Electromagnetics Research M, Vol. 16, 235-244, 2011
Abstract
Wideband analysis of frequency dispersive geometries is a challenge in inverse scattering problems. Waveguide duct is an important case in aerial targets with dominant returns. Its dispersive behavior affects the range profile analysis due to occurrence of unwanted range extension. A new high frequency analysis using model based parameter estimation (MBPE) approach is presented. A group delay criteria derived from the nonlinear scattering phase response represents the duct length. Wideband sparse measured frequency domain samples of various waveguides are used as inputs to the model. Comparison is made with joint time-frequency analysis (JTFA) and inverse fast Fourier transform (IFFT) results.
Citation
Hamid Heidar, and Ahad Tavakoli, "Wideband Dispersion Analysis of Waveguide Geometries Using Finite Sampled Data," Progress In Electromagnetics Research M, Vol. 16, 235-244, 2011.
doi:10.2528/PIERM11010103
References

1. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603

2. Kusiek, A. and J. Mazur, "Analysis of scattering from arbitrary configuration of cylindrical objects using hybrid finite-difference mode-matchnig method," Progress In Electromagnetics Research, Vol. 97, 105-127, 2009.
doi:10.2528/PIER09072804

3. Nie, Z.-P., S. Yan, S. He, and J. Hu, "On the basis functions with traveling wave phase factor for efficient analysis of scattering from electrically large targets," Progress In Electromagnetics Research, Vol. 85, 83-114, 2008.
doi:10.2528/PIER08081905

4. Raynal , A. M., J. T. Moore, H. Ling, "Broadband scattering data interpolation based on a relaxed adaptive feature extraction algorithm," Progress In Electromagnetics Research, Vol. 64, 99-116, 2006.
doi:10.2528/PIER06052404

5. Potter, L. C., D.-M. Chiang, R. Carriere, and M. J. Gerry, "A GTD-based parametric model for radar scattering," IEEE Trans. Antennas Propag., Vol. 43, 1058-1067, Oct. 1995.
doi:10.1109/8.467641

6. Miller, E. K., "Model-based parameter estimation in electro-magnetics: Part I. Background and theoretical development," IEEE Antennas and Propagation Magazine, Vol. 40, No. 1, 42-52, Feb. 1998.
doi:10.1109/74.667326

7. Censor, D., "Broadband spatiotemporal differential-operator representations for velocity-dependent scattering," Progress In Electromagnetics Research, Vol. 58, 51-70, 2006.

8. Burkholder, R. J. and P. H. Pathak, "Analysis of EM penetration into and scattering by electrically large open waveguide cavities using Gaussian beam shooting," Proc. IEEE, Vol. 79, No. 10, Oct. 1991.

9. Liao, S. and R. J. Vernon, "On the image approximation for electromagnetic wave prpopagation and PEC scattering in cylindrical harmonics," Progress In Electromagnetics Research, Vol. 66, 65-88, 2006.
doi:10.2528/PIER06083002

10. Wang , S., X. Guan, D.-W. Wang, X. Ma, and Y. Su, "Fast calculation of wide-band responses of complex radar targets," Progress In Electromagnetics Research, Vol. 68, 185-196, 2007.
doi:10.2528/PIER06081702

11. Sabry, R. and P. W. Vachon, "Advanced polarimetric synthetic aperture radar (SAR) and electro-optical (EO) data fusion through uni¯ed coherent formulation of the scattered EM field," Progress In Electromagnetics Research, Vol. 84, 189-203, 2008.
doi:10.2528/PIER08071005

12. Tong, M.-S. and W. C. Chew, "Nystrom method with edge condition for electromagnetic scattering by 2D open structures," Progress In Electromagnetics Research, Vol. 62, 49-68, 2006.
doi:10.2528/PIER06021901

13. Fuller, D. F., A. J. Terzuoli, P. J. Collins, and R. Williams, "Approach to object classification using dispersive scattering centers," IEE Proc. Radar Sonar Navig., Vol. 151, No. 2, Apr. 2004.
doi:10.1049/ip-rsn:20040187

14. Semnani, A. and M. Kamyab, "An enhanced method for inverse scattering problems using fourier series expansion in conjunction with FDTD and PSO," Progress In Electromagnetics Research, Vol. 76, 45-64, 2007.
doi:10.2528/PIER07061204

15. Chen, V. C. and H. Ling, Time-frequency Transforms for Radar Imaging and Signal Analysis, Artech House, 2002.

16. Rihaczek, A. W. and S. J. Hershkowitz, "Theory and Practice of Radar Target Identification," Artech House, 2000.