Vol. 28
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-02-03
Fast ISAR Image Simulation of Targets at Arbitrary Aspect Angles Using a Novel Sbr Method
By
Progress In Electromagnetics Research B, Vol. 28, 129-142, 2011
Abstract
We present an efficient way to generate the inverse synthetic aperture radar (ISAR) image of a target at an arbitrary aspect angle using the shooting and bouncing ray (SBR) method, which is much faster than the conventional approach by inverse Fourier transforming the computed scattered fields over frequency and aspect domain. We propose a general image-domain ray-tube integration formula, which contains aspect-dependent factors. The new formula can provide ISAR images of a target rapidly and conveniently in different image planes at different aspect angles in a world coordinate system. The ISAR images of a cube and an aircraft for several aspect angles and different image planes are presented to demonstrate the efficiency and accuracy of the general formula. The proposed method is more significant when large amount of ISAR images of a target are required to build the database for target recognition.
Citation
Xin-Yi He, Xin-Bo Wang, Xiaoyang Zhou, Bo Zhao, and Tie-Jun Cui, "Fast ISAR Image Simulation of Targets at Arbitrary Aspect Angles Using a Novel Sbr Method," Progress In Electromagnetics Research B, Vol. 28, 129-142, 2011.
doi:10.2528/PIERB10122703
References

1. Farhat, N. H., C. L. Werner, and T. H. Chu, "Prospects of three-dimensional projective and tomographic imaging radar networks," Radio Sci., Vol. 19, 1347-1355, 1984.
doi:10.1029/RS019i005p01347

2. Carrara, W. G., R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar-signal Processing Algorithms, Artech House, Boston, 1995.

3. Sasaki, K., M. Shimizu, Y. Watanabe, and E. Pottier, "New method in ISAR image reconstruction," Proceeding of CIE International Conference on Radar, 662-664, Oct. 2001.

4. Gu, X., Y. H. Zhang, and X. K. Zhang, "Electromagnetic simulation of ISAR imaging with supper-resolution," Proceeding of 1st Asian and Pacific Conference on Synthetic Aperture Radar, 595-598, Nov. 2007.

5. Wen, X. Y., C. Wang, and H. Zhang, "Complex object's ISAR image simulation," Proceedings of 2005 IEEE International Symposium on Geoscience and Remote Sensing, Vol. 5, 3181-3183, Jul. 2005.

6. Bhalla, R. and H. Ling, "Image-domain ray-tube integration formula for the shooting and bouncing ray technique," Radio Sci., Vol. 30, 1435-1446, Sep./Oct. 1995.
doi:10.1029/95RS02110

7. Bhalla, R. and H. Ling, "ISAR image formation using bistatic computed from shooting and bouncing ray technique," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 9, 1271-1287, Sep./Oct. 1993.
doi:10.1163/156939393X00255

8. Ling, H., C. R. Hou, and S. W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrary shaped cavity," IEEE Trans. Antennas Propagat., Vol. 37, 194-205, Feb. 1989.
doi:10.1109/8.18706

9. Lee, S. W., H. Ling, and R. Chou, "Ray tube integration in shooting and bouncing ray method," Microwave Opt. Tech. Lett., Vol. 1, 286-289, Oct. 1988.

10. Novak, L. M., G. J. Owrika, W. S. Brower, and A. L. Weaver, "The automatic target recognition system in SAIP," The Lincoln Laboratory Journal, Vol. 10, No. 2, 187-202, 1997.

11. Toussaint, J. A. and D. M. Martinsek, "Integrated precision SAR targeting: A SAR targeting simulation," IEEE Transactions on Aerospace and Electronic Systems, Vol. 14, 29-32, Feb. 1999.
doi:10.1109/62.746737

12. Hinz, S., F. Meyer, M. Eineder, and R. Bamler, "Traffic monitoring with spaceborne SAR-Theory, simulations, and experiments ," Computer Vision and Image Understanding, Vol. 106, 231-244, 2007.
doi:10.1016/j.cviu.2006.09.008

13. Van den Broek, B., T. Bieker, and L. Ewijk, "Comparison of modelled to measured high-resolution ISAR data," MMW Advanced Target Recognition and Identification Experiment, 17, 2005.

14. Moreira, A. and Y. Huang, "Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 5, 1029-1040, Sep. 1994.
doi:10.1109/36.312891

15. Lee, S. W. and R. Mittra, "Fourier transformation of polygonal shape function and its application in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 31, 99-103, 1983.

16. Buddendick, H. and T. F. Eibert, "Concept for accelerated raybased monostatic RCS simulations using bistatic approximations," Adv. Radio Sci., Vol. 7, 29-35, 2009.
doi:10.5194/ars-7-29-2009

17. Chen, V. C. and W. J. Miceli, "Simulation of ISAR imaging of moving targets," IEE Proceedings Radar, Sonar and Navigation, Vol. 148, 160-166, Jun. 2001.
doi:10.1049/ip-rsn:20010384

18. Hagelen, M., A. Wahlen, and T. Brehm, "ISAR Imaging of flying helicopters at millimeter-wave frequencies," First European Radar Conference 2004,EURAD, 265-268, 2004.

19. Jain, A. and I. Patel, "SAR/ISAR imaging of a nonuniformly rotating target," IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, 317-321, Jan. 1992.
doi:10.1109/7.135457

20. Garcia-Fernndez, A. F., J. Grajal, and O. A. Yeste-Ojeda, "Analysis of ISAR images of a helicopter by a facet model," Proceedings of the 2008 International Conference on Radar, 32-37, Adelaide, Sep. 2008.

21. Youssef, N. H., "Radar cross section of the complex target," Proceedings of the IEEE, Vol. 77, 722-734, May 1989.
doi:10.1109/5.32062

22. Danklmayer, A., B. J. Doring, M. Schwerdt, and M. Chandra, "Assessment of atmospheric propagation effects in SAR images," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 10, 3507-3518, 2009.
doi:10.1109/TGRS.2009.2022271

23. Vaupel, T. and T. F. Eibert, "Comparison and application of near-field ISAR-imaging techniques for far-field radar cross section determination," IEEE Trans. Antennas Propagat., Vol. 54, No. 1, 144-151, Jan. 2006.
doi:10.1109/TAP.2005.861549

24. Vaupel, T. and F. Weinmann, "Validation of a 3-D near-field ISAR imaging technique with far-field RCS extraction by means of a hybrid GO-PO/PTD ray tracing algorithm," 3rd European Conference on EuCAP, Vol. 691, No. 695, 2009.