Vol. 30
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-05-10
Automatic Threshold Selection in Os-CFAR Radar Detection Using Information Theoretic Criteria
By
Progress In Electromagnetics Research B, Vol. 30, 157-175, 2011
Abstract
This paper proposes a new approach for efficiently determining the unwanted interfering samples in the reference window, for the ordered statistics constant false alarm rate detector, based on the application of the information theoretic criteria principle. The proposed processor termed as Forward Automatic Order Selection Ordered Statistics Detector (FAOSOSD) does not require any prior information about the number of interfering targets. The proposed design aims to improve the Ordered Statistics Constant False Alarm Rate detector performance under severe interference situations. The number of interfering targets is obtained by minimizing the information theoretic criteria. Simulation results that illustrate the performance of the proposed method versus the classical OS-CFAR, the AND-CFAR and the OR-CFAR detectors are presented and discussed.
Citation
Boualem Magaz, Adel Belouchrani, and M'hamed Hamadouche, "Automatic Threshold Selection in Os-CFAR Radar Detection Using Information Theoretic Criteria," Progress In Electromagnetics Research B, Vol. 30, 157-175, 2011.
doi:10.2528/PIERB10122502
References

1. Skolnik, M. I., Introduction to Radar Systems, 3rd Ed., McGraw-Hill Book Company Wiley-Interscience, 2001.

2. Gini, F., A. Farina, and M. Greco, "Selected list of references on radar signal processing," IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, No. 1, 329-360, Jan. 2001.
doi:10.1109/7.913696

3. Skolnik, M. I., Radar Handbook, 3rd Ed., McGraw-Hill, 2008.

4. Liu, N. N., J. Li, and Y. Cui, "A new detection algorithm based on CFAR for radar image with homogeneous background," Progress In Electromagnetics Research C, Vol. 15, 13-22, 2010.
doi:10.2528/PIERC10061201

5. Habib, M. A., M. Barkat, B. Aissa, and T. A. Denidni, "CA-CFAR detection performance of radar targets embedded in ``non centred Chi-2 Gamma" clutter," Progress In Electromagnetics Research, Vol. 88, 135-148, 2008.
doi:10.2528/PIER08092203

6. Barkat, M., Signal Detection and Estimation, 2nd Ed., Artech House, 2005.

7. Rohling, H. , "Radar CFAR thresholding in clutter and multiple target situations," IEEE Transactions on Aerospace and Electronic Systems, Vol. 19, 608-621, Jul. 1983.
doi:10.1109/TAES.1983.309350

8. Rickard, J. T. and M. Dillard, "Adaptive detection algorithms for multiple target situations," IEEE Transactions on Aerospace and Electronic Systems, Vol. 13, No. 4, 338-343, Jul. 1977.
doi:10.1109/TAES.1977.308466

9. Barkat, M., S. D. Himonas, and P. K. Varshney, "CFAR detection for multiple target situations," IEE Proceedings, Vol. 136, No. 5, 1989.

10. El Mashade, M. B., S. D. Himonas, and P. K. Varshney, "Analysis of the censored-mean level CFAR processor in multiple target and uniform clutter," IEE Proceedings Radar, Sonar and Navigation, Vol. 142, No. 5, 259-266, 1995.
doi:10.1049/ip-rsn:19951985

11. Himonas, S. D. and M. Barkat, "Automatic censored CFAR detection for nonhomogeneous envirments," IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, No. 1, 286-304, Jan. 1992.
doi:10.1109/7.135454

12. Farrouki, A. and M. Barkat, "Automatic censoring CFAR detector based on ordered data variability for nonhomogeneous envirenments," IEE Proc., Radar, Sonar, Navig., Vol. 152, No. 1, Feb. 2005.
doi:10.1049/ip-rsn:20045006

13. Finn, H. M. and R. S. Johnson, "Adaptive detection mode with threshold control as a function of spatially sampled clutter level estimates," RCA Review, Vol. 29, 414-464, Sep. 1968.

14. Hansen, V. G. and J. H. Sawyers, "Detectability loss due to greatest of selection in a cell-averaging CFAR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 16, 115-118, Jan. 1980.
doi:10.1109/TAES.1980.308885

15. Trunk, G. V., "Range resolution of targets using automatic detection," IEEE Transactions on Aerospace and Electronic Systems, Vol. 14, No. 5, 750-755, Sep. 1978.
doi:10.1109/TAES.1978.308625

16. Khalighi, M. A. and G. M. Bastani, "Adaptive CFAR processor for nonhomogeneous environments," IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 3, 889-897, Jul. 2000.
doi:10.1109/7.869508

17. Gandhi , P. P. and A. Kassam, "Analysis of CFAR processors in nonhomogenous background," IEEE Transactions on Aerospace and Electronic Systems, Vol. 24, No. 4, 427-445, Jul. 1988.
doi:10.1109/7.7185

18. Qu, Y. and C. K. Nemai, "Novel CFAR detection," Third International conference on Electrical and Computer Engineering, ICECE 2004, Dec. 2004.

19. El Mashade, M. B., "Analysis of CFAR detection of fluctuating targets," Progress In Electromagnetics Research C, Vol. 2, 65-94, 2008.
doi:10.2528/PIERC08020802

20. Xue, W. and X.-W. Sun, "Multiple targets detection method based on binary hough transform and adaptive time-frequency filtering ," Progress In Electromagnetics Research, Vol. 74, 309-317, 2007.
doi:10.2528/PIER07051406

21. El Mashade, M. B., "Performance analysis of OS structure of CFAR detectors in fluctuating target environments," Progress In Electromagnetics Research C, Vol. 2, 127-158, 2008.
doi:10.2528/PIERC08022807

22. Grunwald , P. D., I. J. Myung, and M. A. Pitt, Advances in Minimum Description Length Theory and Applications, The MIT Press, 2005.

23. Wax, M. and T. Kailath, "Detection of signals by information theoritic criteria,", Vol. 33, No. 2, Apr. 1985.

24. Magaz, B., A. Belouchrani, and M. Hamadouche, "Automatic order selection for OS-CFAR detection improvement under severe interference situations using information theoretic criteria," IEEE Transactions on Aerospace and Electronic Systems, Proc. International Radar Conference , Oct. 2009.