1. Hagness, S. C., A. Taflove, J. E. Bridges "Two dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, 1470-1479, 1998.
doi:10.1109/10.730440
2. Fear, E. C. and M. A. Stuchly, "Microwave system for breast tumor detection," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 11, 470-472, 1999.
doi:10.1109/75.808040
3. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 1841-1853, 2000.
doi:10.1109/22.883861
4. Bond, E. J., X. Li, S. C. Hagness, and B. D. V. Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Transactions on Antennas and Propogation, Vol. 51, No. 8, 1690-1705, 2003.
doi:10.1109/TAP.2003.815446
5. Nilavalan, R., A. Gbedemah, I. J. Craddock, X. Li, and S. C. Hagness, "Numerical investigation of breast tumour detection using multi-static radar," IET Electronics Letters, Vol. 39, No. 25, 1787-1789, 2003.
doi:10.1049/el:20031183
6. Bindu, G., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149{-169, 2006.
doi:10.2528/PIER05081802
7. Zainud-Deen, S. H., W. M. Hassen, E. El deen Ali, and K. H. Awadalla, "Breast cancer detection using a hybrid finite di®erence frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703
8. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
doi:10.2528/PIER08062701
9. Maskooki, A., E. Gunawan, C. B. Soh, and K. S. Low, "Frequency domain skin artifact removal method for ultra-wideband breast cancer detection," Progress In Electromagnetics Research, Vol. 98, 299-314, 2009.
doi:10.2528/PIER09101302
10. AlShehri, S. A. and S. Khatun, "UWB imaging for breast cancer detection using neural network," Progress In Electromagnetics Research C, Vol. 7, 79-93, 2009.
doi:10.2528/PIERC09031202
11. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Data independent radar beamforming algorithms for breast cancer detection," Progress In Electromagnetics Research, Vol. 107, 331-348, 2010.
doi:10.2528/PIER10061001
12. Byrne, D., M. O'Halloran, E. Jones, and M. Glavin, "Transmitter-grouping robust capon beamforming for breast cancer detection," Progress In Electromagnetics Research, Vol. 108, 401-416, 2010.
doi:10.2528/PIER10090205
13. Byrne , D., M. O'Halloran, M. Glavin, and E. Jones, "Contrast enhanced beamforming for breast cancer detection," Progress In Electromagnetics Research B, Vol. 28, 219-234, 2011.
14. Huynh, P. T., A. M. Jarolimek, and S. Daye, "The false-negative mammogram," Radio Graphics, Vol. 18, 1137-1154, 1998.
15. Elmore, J. G., M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, "Ten-year risk of false positive screening mammograms and clinical breast examinations," The New England Journal of Medicine, Vol. 338, No. 16, 1089-1096, 1998.
doi:10.1056/NEJM199804163381601
16. Davis, S. K., B. D. V. Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 237-246, 2008.
doi:10.1109/TBME.2007.900564
17. Conceicao , R. C., M. O'Halloran, E. Jones, and M. Glavin, "Investigation of classifiers for early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research, Vol. 105, 295-311, 2010.
doi:10.2528/PIER10051904
18. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Support vector machines for the classification of early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research B, Vol. 23, 311-327, 2010.
doi:10.2528/PIERB10062407
19. McGinley, , B., M. O'Halloran, R. C. Conceicao, F. Morgan, M. Glavin, and E. Jones, "Spiking neural networks for breast cancer classification using radar target signatures," Progress In Electromagnetics Research C, Vol. 17, 79-94, 2010.
doi:10.2528/PIERC10100202
20. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Evaluation of features and classifiers for classification of early-stage breast cancer," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 1-14, 2011.
doi:10.1163/156939311793898350
21. Conceicao, R. C., M. O'Halloran, D. Byrne, E. Jones, and M. Glavin, "Tumor classification using radar target signatures," PIERS Proceedings, 346-349, Cambridge, USA, 2010.
22. Chen, Y., E. Gunawan, K. S. Low, S. Wang, C. B. Soh, and T. C. Putti, "Effect of lesion morphology on microwave signature in 2-D ultra-wideband breast imaging," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 8, 2011-2021, 2008.
doi:10.1109/TBME.2008.921136
23. Chen, Y., I. J. Craddock, P. Kosmas, M. Ghavami, and P. Rapajic, "Application of the MIMO radar technique for lesion classi¯cation in UWB breast cancer detection," 17th European Signal Processing Conference (EUSIPCO), 759-763, Glasgow, Scotland, 2009.
24. Chen, Y., I. J. Craddock, P. Kosmas, M. Ghavami, and P. Rapajic, "Multiple-input multiple-output radar for lesion classification in ultrawideband breast imaging," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 1, 187-201, 2010.
doi:10.1109/JSTSP.2009.2038975
25. Chen, Y., I. J. Craddock, and P. Kosmas, "Feasibility study of lesion classi¯cation via contrast-agent-aided UWB breast imaging," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 5, 1003-1007, 2010.
doi:10.1109/TBME.2009.2038788
26. Teo, J., Y. Chen, C. B. Soh, E. Gunawan, K. S. Low, T. C. Putti, and S. Wang, "Breast lesion classification using ultrawideband early time breast lesion response," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 8, 2604-2613, 2010.
doi:10.1109/TAP.2010.2050423
27., University of Wisconsin --- Computational Electromagnetics Laboratory (UWCEM). Last Accessed: 22/09/2010. Availablefrom: http://uwcem.ece.wisc.edu/.
28. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and , "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Physics in Medicine and Biology, Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001
29. Lazebnik, , M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, and T. M. Breslin, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002
30. Muinonen, K., "Introducing the gaussian shape hypothesis for asteroids and comets," Astronomy and Astrophysics,, Vol. 332, 1087-1098, 1998.
31. Muinonen, K., Light Scattering by Stochastically Shaped Particles,in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier and L. D. Travis (eds.), Chapter 11, Academic Press, 2000.