Vol. 20
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-01-27
High Power VHF Frequency-Hopping Filters with High Suppression of Second Harmonic
By
Progress In Electromagnetics Research Letters, Vol. 20, 119-128, 2011
Abstract
A compact helix structure implementation and associated design formula of lumped element second-order bandpass filter circuit for high power frequency-hopping filter are proposed in this paper. The filter schematic provides one, two or three finite transmission zeros (Tzs), and these Tzs locates in the upper stopband to improve the rejection above the center frequency, especially the suppression of second harmonic with two Tzs. The filter schematic is built on a common grounded helix coil of inductive coupled resonator tanks whose suspectance is tunable. Due to the parasitical capacitance of the helix coil, the filter has a feedback capacitor between input and output. Its working mechanism is revealed both mathematically and graphically. The measured results have a good agreement with the 3D full-wave electromagnetic simulation responses. The experimental filter has a insert loss < 1.5 dB , return loss > 15 dB, a 3-dB bandwidth of 5%~8.5% over entire operating range with the power handling capability greater than 49 dBm and the suppression of second harmonic better than 56 dB.
Citation
Zhi-Yuan Zhao, Ping-Hui Li, Kun-Lun Cheng, Wen-Quan Cao, and Kun-He Chen, "High Power VHF Frequency-Hopping Filters with High Suppression of Second Harmonic," Progress In Electromagnetics Research Letters, Vol. 20, 119-128, 2011.
doi:10.2528/PIERL10122002
References

1. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley-Interscience, New York, 2001.
doi:10.1002/0471221619

2. Abunjaileh, A. I. and I. C. Hunter, "Tunable combline bandstop filter with constant bandwidth," IEEE MTT-S Dig., 1349-1352, June 2009.

3. Zhang, K., T. Watson, A. Cardona, and M. Fink, "BaSrTiO3-based 30-88MHz tunable filter," IEEE MTT-S Dig., 1942-1945, May 2010.

4. Qiu, G., C. S. Tsai, B. S. T. Wang, et al. "A YIG/GGG GaAs-based magnetically tunable wideband microwave band-pass filter using cascaded band stop filters," IEEE Transactions on Magnetics, Vol. 44, No. 11, 3123-3126, November 2008.

5. Hall , C. A., R. C. Luetzelschwab, R. D. Streeter, et al. "A 25watt RF MEM-tuned VHF bandpass filter," IEEE MTT-S Dig., 503-506, June 2003.

6. Brown, A. R., "A varactor tuned RF filter," IEEE Transactions on Microwave Theory and Technique, 1-4, October 1999.

7. Xozyrev, A., A. Ivanov, V. Keis, et al. "Ferroelectric films nonlinear properties and applications in microwave devices," IEEE MTT-S Dig., 985-988, June 1998.

8. Bouhamame, M., S. Amiot, O. Crand, et al. "Integrated tunable RF filter for TV reception," ICECS, Vol. 14, 837-840, December 2007.

9. Chen, K., Z. Chen, and L. Zhu, "Design of a high power digital tunable filter," Proc. ICMMT, Vol. 7, 496-498, May 2010.

10. Chen, J.-X., J. Shi, Z.-H. Bao, and Q. Xue, "Tunable and switchable bandpass filters using slot-line resonators," Progress In Electromagnetics Research, Vol. 111, 25-41, 2011.
doi:10.2528/PIER10100808

11. Vander Hagen, G. A., "The electrical tuning of helical resonators," Microwave Journal, Vol. 10, No. 8, 84-90, November 1967.

12. Zhao , L. and C. Liang, "Study of the HF electronically tunable power filter," CAS Symp. IEEE Emerging Technologies: Mobile and Wireless Comm., Vol. 6, 303-304, May 2004.

13. Tyurnev, V. V., "Coupling coefficients of resonators in microwave filter theory," Progress In Electromagnetics Research B, Vol. 21, 47-67, 2010.

14. Zverev, A. I. and H. J. Blinchikoff, "Realization of a filter with helical components," IRE Transactions on Component Parts, Vol. 9, 99-110, September 1961.
doi:10.1109/TCP.1961.1136604