Vol. 16
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-01-31
Computation of the RCS of 3D Conductor with Arbitrary Shape by Using Piecewise Sibc and Forward Backward Iterative Scheme
By
Progress In Electromagnetics Research M, Vol. 16, 225-234, 2011
Abstract
In this paper, we propose a computational method for computing RCS of 3D conductor, by using piecewise surface impedance boundary conditions and forward backward iterative scheme. In our previous work, we have reported a numerical method combining Rytov's perturbation method and level set technique to construct a piecewise surface impedance, we showed that by using level set technique, we could model an arbitrarily shaped conductor by a piecewise distribution of low- and high-order SIBCs. The method proposed in this article postulates the use of local "buffer regions" to suppress spurious edge effects introduced by the abrupt termination of each SIBC and ensure stability of RCS computing.
Citation
Afif Bouzidi, and Taoufik Aguili, "Computation of the RCS of 3D Conductor with Arbitrary Shape by Using Piecewise Sibc and Forward Backward Iterative Scheme," Progress In Electromagnetics Research M, Vol. 16, 225-234, 2011.
doi:10.2528/PIERM10121803
References

1. Yuferev, S. V. and N. Ida, Surface Impedance Boundary Conditions: A Comprehensive Approach, Illustre Ed., London, 2009.
doi:10.1201/9781420044904

2. Bouzidi, A. and T. Aguili, "Piecewise surface impedance boundary conditions by combining Rytovs perturbation method and level set technique," Progress In Electromagnetics Research M, Vol. 16, 63-71, 2011.

3. Gibson, W. C., The Method of Moments in Electromagnetics, Illustre Ed., London, 2007.
doi:10.1201/9781420061468.ch4

4. Tai, X.-C. and T. F. Chan, "A survey on multiple level set methods with applications for identifying piecewise constant functions," International J. Numerical Analysis and Modelling, Vol. 1, No. 1, 25-48, 2004.

5. Cheng, L.-T., P. Burchard, B. Merriman, and S. Osher, "Motion of curves constrained on surfaces using a level-set approach," J. Comput. Phys., Vol. 175, No. 2, 604-644, 2002.
doi:10.1006/jcph.2001.6960

6. Conor, B., C. Peter, and C. Marissa, "A novel ierative solution A novel ierative solution," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 10, 2781-2784, 2004.
doi:10.1109/TAP.2004.834405

7. Mitchell, I. M., "A toolbox of level set methods (Ver-sion 1.1)," , Department of Computer Science, University of British Columbia, Vancouver, BC, Canada, Available:http://www.cs.ubc.ca/ mitchell/ToolboxLS/index.html, 2007.

8. Persson, P.-O. and G. Strang, "Simple mesh generator in matlab,", Department of Mathematics, Massachusetts Institute of Technology, Available: http://math.mit.edu/ persson/mesh/, 2005.