Vol. 28
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-02-07
Room Temperature Terahertz Photodetection in Atomic and Quantum Well Realized Structures
By
Progress In Electromagnetics Research B, Vol. 28, 163-182, 2011
Abstract
A novel kind of room temperature terahertz photodetector based on Electromagnetically Induced Transparency (EIT) is presented. The main idea for room temperature and THz range operation is reduction of dark current which is done by converting of the incoming terahertz signal (long-wavelength Infrared signal) to short-wavelength field through EIT phenomena. For realization of this idea, we examine EIT phenomena in multi levels atomic system and quantum wells cascade structures. In the proposed structure the quantum interference between long wavelength and short-wavelength radiation modifies the absorption characteristic of short-wavelength probe field. By this means, the terahertz signal does not interact directly with ground state electrons, but affects on the absorption characteristics of the short-wavelength or visible probe optical field which directly interact with ground state electrons. Therefore, the important thermionic dark current in terahertz detection, can be strongly reduced. So, the proposed idea is appropriate for terahertz and room temperature applications.
Citation
Majed Zyaei, Aly Rostami, Hamed Haji Khanmohamadi, and Hassan Rasooli Saghai, "Room Temperature Terahertz Photodetection in Atomic and Quantum Well Realized Structures," Progress In Electromagnetics Research B, Vol. 28, 163-182, 2011.
doi:10.2528/PIERB10121502
References

1. Diakides, N. A. and J. D. Bronzino, Medical Infrared Imaging, CRC Press, 2008.

2. Ganichev, S. D. and W. Prettl, Intense Terahertz Excitation of Semiconductors, Oxford University Press, 2006.

3. Miles, R. E., X. C. Zhang, H. Eisele, and A. Krotkus, Terahertz Frequency Detection and Identification of Material and Object, Springer, 2006.

4. Schneider, H. and H. C. Liu, Quantum Well Infrared Photodetectors, Springer, 2006.

5. Paiella, R., Intersubband Transitions in Quantum Structures, McGraw-Hill, 2006.

6. Levine, B. F., "Quantum well infrared photodetectors," Appl. Phys., Vol. 74, R1-R81, 1993.

7. Etteh, N. E. I. and P. Harrison, "Carrier scattering approach to the origins of dark current in mid and far-infrared (terahertz) quantum-well intersubband photodetectors (QWLPs)," IEEE J. Quantum Electron., Vol. 37, 672-675, 2001.
doi:10.1109/3.918580

8. Fleischhauer, M., A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys., Vol. 77, 633-673, 2005.
doi:10.1103/RevModPhys.77.633

9. Scully, M. O. and M. S. Zubairy, Quantum Optics, Cambridge University Press, 1997.

10. Zyaei, M., H. Rasooli Saghai, K. Abbasian, and A. Rostami, "Long wavelength infrared photodetector design based on electromagnetically induced transparency," Optics Comm., Vol. 281, 3739-3747, 2008.
doi:10.1016/j.optcom.2008.03.036

11. Rostami, A., M. Zyaei, H. Rasooli Saghai, and F. J. Sharifi, "Terahertz asymmetric quantum well infrared photodetector design based on electromagnetically induced transparency," SPIE, Vol. 7266, 72660Z-1, 2008.

12. Sandhya, N. and K. K. Sharma, "Atomic coherence effects in four-level systems: Doppler-free absorption within an electromagnetically-induced-transparency window," Phys. Rev. A, Vol. 55, 2155-2158, 1997.
doi:10.1103/PhysRevA.55.2155

13. Banacloche, J. G., Y. Q. Li, S. Z. Jin, and M. Xiao, "Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment ," Phys. Rev. A, Vol. 51, 576-584, 1995.
doi:10.1103/PhysRevA.51.576

14. Phillips, C. C., E. Paspalakis, G. B. Serapiglia, C. Sirtori, and K. L. Vodopyanov, "Observation of electromagnetically induced transparency and measurements of subband dynamics in a semiconductor quantum well," Physica E, Vol. 7, 166-173, 2000.
doi:10.1016/S1386-9477(99)00290-8

15. Dynes, J. F., M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, "Optically mediated coherent population trapping in asymmetric semiconductor quantum wells," Phys. Rev. B, Vol. 72, 085323-085329, 2005.
doi:10.1103/PhysRevB.72.085323

16. Wu, J. H., J. Y. Gao, J. H. Xu, L. silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, "Ultrafast all optical switching via tunable fano interference," Phys. Rev. Lett., Vol. 95, 057401-057406, 2005.
doi:10.1103/PhysRevLett.95.057401

17. Schmidt, H. and A. Imamoglu, "Nonlinear optical devices based on a transparency in semiconductor intersubband transitions," Opt. Comm., Vol. 131, 333-338, 1996.
doi:10.1016/0030-4018(96)00354-9

18. Faist, J., F. Capasso, C. Sirtori, K. West, and L. N. Pfeiffer, "Controlling the sign of quantum interference by tunneling from quantum wells," Nature, Vol. 390, 589-591, 1997.
doi:10.1038/37562

19. Sun, H., S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, "Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference ," Phys. Rev. B, Vol. 74, 155314-155318, 2006.
doi:10.1103/PhysRevB.74.155314

20. Li, J.-H., "Controllable optical bistability in a four-subband semiconductor quantum well system," Phys. Rev B, Vol. 75, 155329-155334, 2007.
doi:10.1103/PhysRevB.75.155329