Vol. 114
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-02-18
Theoretical Foundation for the Method of Connected Local Fields
By
Progress In Electromagnetics Research, Vol. 114, 67-88, 2011
Abstract
The method of connected local fields (CLF), developed for computing numerical solutions of the two-dimensional (2-D) Helmholtz equation, is capable of advancing existing frequency-domain finite-difference (FD-FD) methods by reducing the spatial sampling density nearly to the theoretical limit of two points per wavelength. In this paper, we show that the core theory of CLF is the result of applying the uniqueness theorem to local EM waves. Furthermore, the mathematical process for computing the local field expansion (LFE) coefficients from eight adjacent points on a square is similar to that in the theory of discrete Fourier transform. We also present a theoretical analysis of both the local and global errors in the theory of connected local fields and provide closed-form expressions for these errors.
Citation
Sin-Yuan Mu, and Hung-Wen Chang, "Theoretical Foundation for the Method of Connected Local Fields," Progress In Electromagnetics Research, Vol. 114, 67-88, 2011.
doi:10.2528/PIER10121401
References

1. Chang, H.-W. and S.-Y. Mu, "Semi-analytical solutions of 2-D Homogeneous Helmholtz equation by the method of connected local fields," Progress In Electromagnetics Research, Vol. 109, 399-424, 2010.
doi:10.2528/PIER10092807

2. Chang, H.-W. and S.-Y. Mu, "Novel nine-point FD coefficients for the two-dimensional Helmholtz equation," Cross Strait Tri-Regional Radio Science and Wireless Technology Conference, Hanan, China, 2010.

3. Chang, H.-W. and S.-Y. Mu, "Frequency dependent FD-like coefficients for 2-D Helmholtz equation derived from local Fourier-Bessel series," The 6th International Conference on Photonics and Applications, ICPA-6 2010, HaNoi, Vietnam, 2010.

4. Chang, H.-W. and S.-Y. Mu, "Dispersion analysis of Fourier-Bessel series derived FD coefficients for two-dimensional Helmholtz equation," The 6th International Conference on Photonics and Applications, ICPA-6 2010, HaNoi, Vietnam, 2010.

5. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering from arbitrarily shaped chiral objects using the finite difference frequency domain method," Progress In Electromagnetics Research, Vol. 67, 1-24, 2007.
doi:10.2528/PIER06083104

6. Jung, B. H. and T. K. Sarkar, "Solving time domain Helmholtz wave equation with MOD-FDM," Progress In Electromagnetics Research, Vol. 79, 339-352, 2008.
doi:10.2528/PIER07102802

7. Chang, H.-W., W.-C. Cheng, and S.-M. Lu, "Layer-mode transparent boundary condition for the hybrid FD-FD method," Progress In Electromagnetics Research, Vol. 94, 175-195, 2009.
doi:10.2528/PIER09061606

8. Zheng, G., B.-Z. Wang, H. Li, X.-F. Liu, and S. Ding, "Analysis of finite periodic dielectric gratings by the finite-difference frequency-domain method with the sub-entire-domain basis functions and wavelets," Progress In Electromagnetics Research, Vol. 99, 453-463, 2009.
doi:10.2528/PIER09111502

9. Chang, H.-W. and Y.-H. Wu, "Analysis of perpendicular crossing dielectric waveguides with various typical index contrasts and intersection profiles," Progress In Electromagnetics Research, Vol. 108, 323-341, 2010.
doi:10.2528/PIER10081008

10. Ishimaru, A., Electromagnetic Propagation, Radiation, and Scattering, Prentice Hall, 1991.

11. Zhou, X., "On independence, completeness of Maxwell's equations and uniqueness theorems in electromagnetics," Progress In Electromagnetics Research, Vol. 64, 117-134, 2006.
doi:10.2528/PIER06061302

12. Zhou, X., "On uniqueness theorem of a vector function," Progress In Electromagnetics Research, Vol. 65, 93-102, 2006.
doi:10.2528/PIER06081202

13. Semnani, A. and M. Kamyab, "Truncated cosine Fourier series expansion method for solving 2-D inverse scattering problems," Progress In Electromagnetics Research, Vol. 81, 73-97, 2008.
doi:10.2528/PIER07122404

14. Zhao, Y. W., M. Zhang, and H. Chen, "An efficient ocean SAR RAW signal simulation by employing fast Fourier transform," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2273-2284, 2010.
doi:10.1163/156939310793699064

15. Zhu, C.-H., Q. H. Liu, Y. Shen, and L. Liu, "A high accuracy conformal method for evaluating the discontinuous Fourier transform," Progress In Electromagnetics Research, Vol. 109, 425-440, 2010.
doi:10.2528/PIER10082007

16. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Dover Publications, 1972.

17. Nabavi, M., M. H. K. Siddiqui, and J. Dargahi, "A new 9-point sixth-order accurate compact finite-difference method for the Helmholtz equation," Journal of Sound and Vibration, Vol. 307, 972-982, 2007.
doi:10.1016/j.jsv.2007.06.070

18. Chang, H.-W., Y.-H. Wu, and W.-C. Cheng, "Hybrid FD-FD analysis of crossing waveguides by both the plus and the cross structural Symmetry," Progress In Electromagnetics Research, Vol. 103, 217-240, 2010.
doi:10.2528/PIER10030202

19. Cheng, W.-C., "Finite-difference frequency-domain analysis of a dielectric waveguide crossing,", Ph.D. Thesis, Department of Photonics, National Sun Yat-sen University, 2010.