1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, Jan. 1968.
doi:10.1070/PU1968v010n04ABEH003699
2. Pendry, J. B., A. J. Holden, and W. J. Stewart, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773
3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter., Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007
4. Pendry, J. B., A. J. Holden, and D. L. Robbins, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory and Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002
5. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184
6. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, 489-491, 2001.
doi:10.1063/1.1343489
7. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847
8. Simovski, C. R. and L. X. He, "Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting omega particles," Phys. Lett. A, Vol. 311, 254-263, 2003.
doi:10.1016/S0375-9601(03)00494-8
9. Chen, H. S., L. X. Ran, and J. T. Huangfu, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E, Vol. 70, 057605, 2004.
doi:10.1103/PhysRevE.70.057605
10. Chen, H. S., L. X. Ran, and J. T. Huangfu, "Negative refraction of a combined double S-shaped metamaterial," Appl. Phys. Lett., Vol. 86, 151909, 2005.
doi:10.1063/1.1897045
11. Liu, Y. H., C. R. Luo, and X. P. Zhao, "H-shaped structure of left-handed metamaterials with simultaneous negative permittivity and permeability," Acta Phys. Sinica, Vol. 56, 5883, 2007.
12. Kafesaki, M., I. Tsiapa, N. Katsarekes, T. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials: The fish-net structure and its variations," Phys. Rev. B, Vol. 75, 235114, 2007.
doi:10.1103/PhysRevB.75.235114
13. Kern, D. J., D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, "The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surface," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 8-17, 2005.
doi:10.1109/TAP.2004.840540
14. Yeo, J., J. F. Ma, R. Mittra, "GA-based design of artificial magnetic ground planes (AMGS) utilizing frequency-selective surfaces for bandwidth enhancement of microstrip antennas," Microw. Opt. Technol. Lett., Vol. 44, No. 1, 6-13, 2005.
doi:10.1002/mop.20532
15. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, John Wiley & Sons, 1999.
16. Choo, H. and H. Ling, "Design of broadband and dual-band microstrip antennas on a high-dielectric substrate using a genetic algorithm," IEE Proc. --- Microw. Antennas Propag., Vol. 150, No. 3, 137-142, 2003.
doi:10.1049/ip-map:20030291
17. Chakravarty, S., R. Mittra, and N. R. Williams, "On the application of the microgenetic algorithm to the design of broad-band microwave absorbers comprising frequency-selective surfaces embedded in multilayered dielectric media," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 6, 1050-1059, 2001.
doi:10.1109/22.925490
18. Panduro, M. A., C. A. Brizuela, L. I. Balderas, and D. A. Acosta, "A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays," Progress In Electromagnetics Research B, Vol. 13, 171-186, 2009.
doi:10.2528/PIERB09011308
19. Siakavara, K., "Novel fractal antenna arrays for satellite networks: Circular ring Sierpinski carpet arrays optimized by genetic algorithms," Progress In Electromagnetics Research, Vol. 103, 115-138, 2010.
doi:10.2528/PIER10020110
20. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E,, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617
21. Goldberg, D., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989.
22. Yee, K. S., "Numerical solution of intitial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. on AP, Vol. 14, 302-307, May 1966.
23. Luebbers, R. J., F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. on EMC, Vol. 32, 222-227, Aug. 1990.
24. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from re°ection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104
25. Chen, X. D., T. M. Grzegorezyk, B. I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608