Vol. 22
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-03-29
The Microstructure Design Optimization of Negative Index Metamaterials Using Genetic Algorithm
By
Progress In Electromagnetics Research Letters, Vol. 22, 95-108, 2011
Abstract
In recent years, metamaterials have been the subject of research interest for many investigators worldwide. However, most of reported metamaterial microstructures are obtained based on human intuition, experience or large numbers of simulation experiments which were time-consuming, ineffective or expensive. In this paper, we propose a novel negative index metamaterial microstructure design methodology that uses a FDTD solver optimized by genetic algorithm (GA) technique in order to achieve a simultaneously negative permeability and permittivity. Firstly, an novel genetic algorithm optimization model for wide frequency band of negative refraction was proposed. Then the effectiveness of the new technique was demonstrated by a microstructure design example that was optimized by GA. By using numerical simulations techniques and S-parameter retrieval method, we found that the GA-designed optimal solution can exhibit a wide LH frequency band with simultaneously negative values of effective permittivity and permeability. Therefore, the design methodology presented in this paper is a very convenient and efficient way to pursue a novel metamaterial microstructure of left-handed materials with desired electromagnetic characteristics.
Citation
Yongxiang Zhao, Fei Chen, Haiya Chen, Na Li, Qiang Shen, and Lianmeng Zhang, "The Microstructure Design Optimization of Negative Index Metamaterials Using Genetic Algorithm," Progress In Electromagnetics Research Letters, Vol. 22, 95-108, 2011.
doi:10.2528/PIERL10121002
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, Jan. 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., A. J. Holden, and W. J. Stewart, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter., Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007

4. Pendry, J. B., A. J. Holden, and D. L. Robbins, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory and Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

5. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

6. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, 489-491, 2001.
doi:10.1063/1.1343489

7. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

8. Simovski, C. R. and L. X. He, "Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting omega particles," Phys. Lett. A, Vol. 311, 254-263, 2003.
doi:10.1016/S0375-9601(03)00494-8

9. Chen, H. S., L. X. Ran, and J. T. Huangfu, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E, Vol. 70, 057605, 2004.
doi:10.1103/PhysRevE.70.057605

10. Chen, H. S., L. X. Ran, and J. T. Huangfu, "Negative refraction of a combined double S-shaped metamaterial," Appl. Phys. Lett., Vol. 86, 151909, 2005.
doi:10.1063/1.1897045

11. Liu, Y. H., C. R. Luo, and X. P. Zhao, "H-shaped structure of left-handed metamaterials with simultaneous negative permittivity and permeability," Acta Phys. Sinica, Vol. 56, 5883, 2007.

12. Kafesaki, M., I. Tsiapa, N. Katsarekes, T. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials: The fish-net structure and its variations," Phys. Rev. B, Vol. 75, 235114, 2007.
doi:10.1103/PhysRevB.75.235114

13. Kern, D. J., D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, "The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surface," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 8-17, 2005.
doi:10.1109/TAP.2004.840540

14. Yeo, J., J. F. Ma, R. Mittra, "GA-based design of artificial magnetic ground planes (AMGS) utilizing frequency-selective surfaces for bandwidth enhancement of microstrip antennas," Microw. Opt. Technol. Lett., Vol. 44, No. 1, 6-13, 2005.
doi:10.1002/mop.20532

15. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, John Wiley & Sons, 1999.

16. Choo, H. and H. Ling, "Design of broadband and dual-band microstrip antennas on a high-dielectric substrate using a genetic algorithm," IEE Proc. --- Microw. Antennas Propag., Vol. 150, No. 3, 137-142, 2003.
doi:10.1049/ip-map:20030291

17. Chakravarty, S., R. Mittra, and N. R. Williams, "On the application of the microgenetic algorithm to the design of broad-band microwave absorbers comprising frequency-selective surfaces embedded in multilayered dielectric media," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 6, 1050-1059, 2001.
doi:10.1109/22.925490

18. Panduro, M. A., C. A. Brizuela, L. I. Balderas, and D. A. Acosta, "A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays," Progress In Electromagnetics Research B, Vol. 13, 171-186, 2009.
doi:10.2528/PIERB09011308

19. Siakavara, K., "Novel fractal antenna arrays for satellite networks: Circular ring Sierpinski carpet arrays optimized by genetic algorithms," Progress In Electromagnetics Research, Vol. 103, 115-138, 2010.
doi:10.2528/PIER10020110

20. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E,, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617

21. Goldberg, D., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989.

22. Yee, K. S., "Numerical solution of intitial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. on AP, Vol. 14, 302-307, May 1966.

23. Luebbers, R. J., F. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. on EMC, Vol. 32, 222-227, Aug. 1990.

24. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from re°ection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

25. Chen, X. D., T. M. Grzegorezyk, B. I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608