Vol. 20
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-01-15
FDTD Analysis of Chiral Discontinuities in Waveguides
By
Progress In Electromagnetics Research Letters, Vol. 20, 19-26, 2011
Abstract
A simple finite difference time domain (FDTD) scheme is proposed for modeling three-dimensional (3D) nondispersive chiral media. Based on the recently reported new BI-FDTD mesh method and rearranged curl equations, this scheme implements a simple leapfrog algorithm. By adding the mirror layer, the perfect electric conductor (PEC) condition is implemented in the BI-FDTD mesh method of 3D problem. Results of this scheme are presented for the scattering coefficients of discontinuity in waveguides, which are partially filled with chiral or achiral media. The validation is performed by comparing the results with those obtained from the literature and software simulation.
Citation
De-An Cao, and Qing-Xin Chu, "FDTD Analysis of Chiral Discontinuities in Waveguides," Progress In Electromagnetics Research Letters, Vol. 20, 19-26, 2011.
doi:10.2528/PIERL10120203
References

1. Lindell, , I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media , Artech House, MA, 1994.

2. Sihvola, A. H., "Electromagnetic modeling of bi-isotropic media," Progress In Electromagnetics Research, Vol. 9, 45-86, 1994.

3. Wu, X. Z. and D. L. Jaggard, "Three-dimensional discontinuities in chirowaveguides," Microwave Opt. Tech. Lett., Vol. 16, No. 5, 805-209, 1997.
doi:10.1002/(SICI)1098-2760(19971205)16:5<315::AID-MOP14>3.0.CO;2-2

4. Wu, T. X. and D. L. Jaggard, "A comprehensive study of discontinuities in chirowaveguides," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 10, 2320-2330, 2002.
doi:10.1109/TMTT.2002.803426

5. Bray, M. G., "Finite-difference time-domain simulation of electromagnetic bandgap and bi-anisotropic metamaterials,", Ph.D. Dissertation, Dept. of Electrical Engineering, Pennsylvania State Univ., University Park, 2005.

6. Gomez, A., A. Lakhtakia, J. Margineda, et al. "Full-wave hybrid technique for 3D isotropic-chiral-material discontinuities in rectangular waveguides: Theory and experiment," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 12, 2815-2825, 2008.
doi:10.1109/TMTT.2008.2007190

7. Akyurtlu, A., "Modeling of bi-anisotropic media using the finite-difference time-domain method,", Ph.D. Dissertation, Dept. of Electrical Engineering, Pennsylvania State Univ., University Park, 2001.

8. Akyurtlu, A. and D. H. Werner, "BI-FDTD: A novel finite-difference time-domain formulation for modeling wave propagation in bi-isotropic media," IEEE Trans. Antennas Propag., Vol. 52, No. 416-425, 2004.

9. Ji, F., K. N. Yung Edward, and X. Q. Sheng, "Three-dimensional FDTD analysis of chiral discontinuities in the waveguide," Int. J. Infrared Millimeter Waves, Vol. 23, No. 10, 1521-1528, 2002.
doi:10.1023/A:1020385721043

10. Grande, A., I. Barba, A. C. L. Cabeceira, et al. "FDTD modeling of transient microwave signals in dispersive and lossy bi-isotropic media," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 3, 773-784, 2004.
doi:10.1109/TMTT.2004.823537

11. Grande, A., I. Barba, A. C. L. Cabeceira, J. Represa, et al., "Two-dimensional extension of a novel FDTD technique for modeling dispersive lossy bi-isotropic media using the auxiliary differential equation method," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 5, 375-377, 2005.
doi:10.1109/LMWC.2005.847732

12. Alcantara, L. D. S., "An unconditionally stable FDTD method for electromagnetic wave propagation analysis in bi-isotropic media," IEEE MTT-S, 661-664, Brasilia, Brazil, 2006.

13. Demir, V., A. Elsherbeni, and E. Arvas, "FDTD formulations for scattering from three dimensional chiral objects," 20th Annual Review of Progress in Applied Computational Electromagnetics, Syracuse, NY, 2004.

14. Cao, D.-A. and Q.-X. Chu, "LOD-like method that characterizes the analytical solution," Progress In Electromagnetics Research Letters, Vol. 15, 127-136, 2010.
doi:10.2528/PIERL10050504

15. Bray, M. G. and D. H. Werner, "A simple dispersive chiral FDTD formulation implemented on a Yee grid," IEEE Antennas and Propagation Society International Symposium, Vol. 1, 126-129, 2005.

16. Demir, V., A. Z. Elsherbeni, E. Arvas, and , "FDTD formulation for dispersive chiral media using the Z transform method," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3374-3384, Oct. 2005.
doi:10.1109/TAP.2005.856328

17. Pereda, J. A., A. Grande, O. Gonzalez, and A. Vegas, "FDTD modeling of chiral media by using the mobius transformation technique," IEEE Antennas and Wireless Propagat. Lett., Vol. 5, No. 1, 327-330, Dec. 2006.
doi:10.1109/LAWP.2006.878902