Vol. 16
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-01-15
Design of a Perfect Electromagnetic Conductor (PEMC) Boundary by Using Periodic Patches
By
Progress In Electromagnetics Research M, Vol. 16, 159-169, 2011
Abstract
Perfect electromagnetic conductor (PEMC) is a novel concept in electromagnetic fields of interesting properties and many potential applications. This paper introduces a new technique to design an artificial surface that has equivalent PEMC properties. The proposed PEMC boundary is based on a periodic structure composed of two conducting patches on a grounded dielectric slab. One of them is embedded inside the substrate and the other lies on the surface of the substrate. A conducting via is used to connect the two patches. In the resulting PEMC boundary, the polarization of the reflected wave is controlled by the tilting angle between the two patches.
Citation
H. M. El-Maghrabi, Ahmed Attiya, and Essam Hashish, "Design of a Perfect Electromagnetic Conductor (PEMC) Boundary by Using Periodic Patches," Progress In Electromagnetics Research M, Vol. 16, 159-169, 2011.
doi:10.2528/PIERM10112201
References

1. Lindell, I. V. and A. H. Sihvola, "Perfect electromagnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 861-869, 2005.
doi:10.1163/156939305775468741

2. Lindell, I. V. and A. H. Sihvola, "Realization of the PEMC boundary," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 9, 3012-3018, Sep. 2005.
doi:10.1109/TAP.2005.854524

3. Lindell, I. V. and A. H. Sihvola, "Transformation method for problems involving perfect electromagnetic conductor (PEMC) structures," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 9, 3005-3011, Sep. 2005.
doi:10.1109/TAP.2005.854519

4. Lindell, I. V. and A. H. Sihvola, "Reflection and transmission of waves at the interface of perfect electromagnetic conductor (PEMC)," Progress In Electromagnetics Research B, Vol. 5, 169-183, 2008.
doi:10.2528/PIERB08022010

5. Lindell, I. V., "Electromagnetic fields in self-dual media in differential-form representation," Progress In Electromagnetics Research, Vol. 58, 319-333, 2006.
doi:10.2528/PIER05072201

6. Lindell, I. V. and A. H. Sihvola, "Possible applications of perfect electromagnetic conductor (PEMC) media," First European Conference on Antennas and Propagation, EuCAP 2006, 2006.

7. Sihvola, A. and I. V. Lindell, "Perfect electromagnetic conductor medium," Annalen der Physik, Vol. 17, No. 9-10, 787-802, Berlin, 2008.
doi:10.1002/andp.200710297

8. Shahvarpour, A., T. Kodera, A. Parsa, and C. Caloz, "Realization of an effective free-space perfect electromagnetic conductor (PEMC) boundary by a grounded ferrite slab using Faraday rotation," European Microwave Conference, EuMC 2009, Sep. 29-Oct. 1, 2009.

9. Shahvarpour, A., T. Kodera, A. Parsa, and C. Caloz, "Arbitrary electromagnetic conductor boundaries using faraday rotation in a grounded ferrite slab," IEEE Transaction on Microwave Theory and Techniques, Vol. 58, No. 11, 2781-2793, Nov. 2010.
doi:10.1109/TMTT.2010.2078010

10. Lerner, D. S., "A wave polarization converter for circular polarization," IEEE Trans. on Antennas and Propagation, Vol. 13, No. 1, Jan. 1965.
doi:10.1109/TAP.1965.1138367

11. Hanfling, J. D., G. Jerinic, and L. R. Lewis, "Twist reflector design using E-type and H-type modes," IEEE Trans. on Antennas and Propagation, Vol. 29, No. 4, Jul. 1981.

12. Kastner, R. and R. Mittra, "A spectral-iteration technique for analyzing a corrugated-surface twist polarizer for scanning re°ector antennas," IEEE Trans. on Antennas and Propagation, Vol. 30, No. 4, Jul. 1982.

13. Yan, D., Q. Gao, C. Wang, C. Zhu, and N. Yuan, "A novel polarization convert surface base don artificial magnetic conductor," Microwave Conference Proceedings, APMC, 2005.

14. Ferrer, P. J., B. Kelem, and C. Craeye, "Design of broadband transpolarizing surfaces," Microw. Opt. Tech. Letters, Vol. 48, No. 12, 2606-2611, Dec. 2006.
doi:10.1002/mop.21989

15. Ferrer, P. J., J. M. Gonzalez-Arbesu, J. Romeu, and C. Craeye, "Design and fabrication of a cross-polarising AMC surface," Proc. 2nd European Conference on Antennas and Propagation (Eucap 2007), Edinburgh, UK, Nov. 2007.

16. Pilz, D. and W. Menzel, "Periodic and quasi-periodic structures for antenna applications," 29th European Microwave Conference, Vol. 3, 311-314, Oct. 1999.