Vol. 28
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-01-15
Surface Waves of Finite Size Electromagnetic Band Gap Woodpile Structures
By
Progress In Electromagnetics Research B, Vol. 28, 19-34, 2011
Abstract
This paper studies the surface modes at the interface of finite size Electromagnetic Band Gap (EBG) woodpile structures. The impact of different types of woodpile terminations on the properties of these surface modes is analyzed. For all the studied terminations there exist surface modes which must be taken into account when designing components based on this EBG structure.
Citation
Inigo Ederra, Juan Carlos Iriarte, Ramon Gonzalo, and Peter de Maagt, "Surface Waves of Finite Size Electromagnetic Band Gap Woodpile Structures," Progress In Electromagnetics Research B, Vol. 28, 19-34, 2011.
doi:10.2528/PIERB10111804
References

1. Joannopoulos, J. D., R. D. Meade, and J. N. Finn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 1995.

2. Lourtioz, J. M., V. Berger, J. M. Gerard, and H. Benisty, "Photonic Crystals: Towards Nanoscale Photonic Devices," Springer, 2005.

3. Ho, K. M., C. T. Chan, C. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: New layer-by-layer periodic structure," Solid State Comm., Vol. 89, 413-416, 1994.
doi:10.1016/0038-1098(94)90202-X

4. Sozuer, H. S. and J. P. Dowling, "Photonic band calculations for woodpile structure," J. Mod. Opt., Vol. 43, 231-234, 1994.
doi:10.1080/09500349414550291

5. Martinez, B., I. Ederra, R. Gonzalo, B. Alderman, L. Azcona, P. G. Huggard, B. de Hon, A. Hussain, S. R. Andrews, L. Marchand, and P. de Maagt, "Manufacturing tolerance analysis, fabrication and characterisation of 3D submillimetre wave electromagnetic bandgap crystals," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 4, 672-681, 2007.
doi:10.1109/TMTT.2007.892803

6. Ozbay, E., "Layer-by-layer photonic crystals from microwave to far-infrared frequencies," J. Opt. Soc. Amer. B, Vol. 13, No. 9, 1945-1955, 1996.
doi:10.1364/JOSAB.13.001945

7. Gonzalo, R., B. Martinez, C. M. Mann, H. Pellemans, P. H. Bolivar, and P. de Maagt, "A low cost fabrication technique for symmetrical and asymmetrical layer by layer photonic crystal at submillimeter wave frequencies," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 10, 2384-2393, 2002.
doi:10.1109/TMTT.2002.803446

8. Noda, S., K. Tomoda, N. Yamamoto, and A. Chutinan, "Full Three-dimensional photonic bandgap crystal at near-infrared wavelengths," Science, Vol. 289, No. 5479, 604-606, 2000.
doi:10.1126/science.289.5479.604

9. Lin, S. Y., J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature, Vol. 394, No. 6690, 251-252, 1998.
doi:10.1038/28343

10. Lin, S. Y. and J. G. Fleming, "A three dimensional optical photonic crystal," J. Lightwave Technol., Vol. 17, No. 11, 1944-1947, 1999.
doi:10.1109/50.802977

11. Gonzalo, R., I. Ederra, C. M. Mann, and P. de Maagt, "Radiation properties of terahertz dipole antenna mounted on photonic crystal," Electron. Lett., Vol. 37, No. 10, 613-614, 2001.
doi:10.1049/el:20010435

12. Ederra, I., R. Gonzalo, B. E. J. Alderman, P. G. Huggard, B. P. de Hon, M. C. van Beurden, A. Murk, L. Marchand, and P. Maagt, "Electromagnetic bandgap based planar imaging array for 500 GHz ," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 11, 2256-2265, 2008.
doi:10.1109/TMTT.2008.2005926

13. Weily, A. R., K. P. Esselle, and B. C. Sanders, "Photonic crystal horn and array antennas," Phys. Rev. E, Vol. 68, No. 1, 016609-1-016609-6, 2003.
doi:10.1103/PhysRevE.68.016609

14. Ederra, I., L. Azcona, B. E. J. Alderman, A. Laisne, R. Gonzalo, C. M. Mann, D. N. Matheson, and P. de Maagt, "A 250 GHz sub-harmonic mixer design using EBG technology," IEEE Trans. Antennas Propagat., Vol. 55, No. 11, 2974-2982, 2007.
doi:10.1109/TAP.2007.908367

15. Bayindir, M., E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, "Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides," Phys. Rev. B, Condens. Matter, Vol. 63, No. 8, 081107, 2001.
doi:10.1103/PhysRevB.63.081107

16. Weily, A. R., T. S. Bird, K. P. Esselle, and B. C. Sanders, "Woodpile EBG phase shifter," Elec. Lett., Vol. 42, No. 25, 1463-1464, 2006.
doi:10.1049/el:20062820

17. Kawashima, S., K. Ishizaki, and S. Noda, "Light propagation in three-dimensional photonic crystals," Opt. Express, Vol. 18, No. 1, 386-392, 2010.
doi:10.1364/OE.18.000386

18. Sell, C., C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li, and K. M. Ho, "Waveguide networks in three-dimensional layer-by-layer photonic crystals," Appl. Phys. Lett., Vol. 84, No. 23, 4605-4607, 2004.
doi:10.1063/1.1751212

19. Kohli, P., C. Christensen, J. Muehlmeier, R. Biswas, G. Tuttle, and K.-M. Ho, "Add-drop filters in three-dimensional layer-by-layer photonic crystals using waveguides and resonant cavities," Appl. Phys. Lett., Vol. 89, No. 23, 231103, 2006.
doi:10.1063/1.2400398

20. Ederra, I., B. Martinez, A. B. Labajos, J. Teniente, R. Gonzalo, and P. de Maagt, "Experimental verification of the reduction of coupling between dipole antennas by using a woodpile substrate," IEEE Trans. Antennas Propagat., Vol. 54, No. 7, 2105-2111, 2006.
doi:10.1109/TAP.2006.877192

21. Meade, R. D., K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B, Vol. 44, No. 19, 1991.
doi:10.1103/PhysRevB.44.10961

22. Feng, S., H.-Y. Sang, Z.-Y. Li, B.-Y. Cheng, and D.-Z. Zhang, "Sensitivity of surface states to the stack sequence of one-dimensional photonic crystals," J. Opt. A: Pure Appl. Opt., Vol. 7, No. 8, 374-381, 2005.
doi:10.1088/1464-4258/7/8/004

23. Zhang, X., L. M. Li, Z. Q. Zhang, and C. T. Chan, "Surface states in two-dimensional metallodielectric photonic crystals studied by a multiple-scattering method ," Phys. Rev. B, Vol. 63, No. 12, 125114, 2001.
doi:10.1103/PhysRevB.63.125114

24. Vlasov, Y. A., N. Moll, and S. J. McNab, "Observation of surface states in a truncated photonic crystal slab," Opt. Lett., Vol. 29, No. 18, 2175-2177, 2004.
doi:10.1364/OL.29.002175

25. Robertson, W. M. and M. S. May, "Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays," Appl. Phys. Lett., Vol. 74, No. 13, 1800-1802, 1999.
doi:10.1063/1.123090

26. Ramos-Mendieta, F. and P. Halevi, "Surface electromagnetic waves in two-dimensional photonic crystals: Effect of the position of the surface plane ," Phys. Rev. B, Vol. 59, No. 23, 15112-15120, 1999.
doi:10.1103/PhysRevB.59.15112

27. Qiu, M. and S. He, "Surface modes in two-dimensional dielectric and metallic photonic band gap structures: A FDTD study," Phys. Lett. A, Vol. 282, 85-91, 2001.
doi:10.1016/S0375-9601(01)00156-6

28. Ishizaki, K. and S. Noda, "Manipulation of photons at the surface of three-dimensional photonic crystals," Nature, Vol. 460, 367-371, 2009.
doi:10.1038/nature08190

29. Eyni, Z., S. Roshan Entezar, A. Namdar, and H. Tajalli, "Tamm states of a nonlinear slab sandwiched between a uniform medium and a one-dimensional photonic crystal," Progress In Electromagnetics Research Letters, Vol. 18, 115-124, 2010.
doi:10.2528/PIERL10072105

30. Gaspar-Armentaa, J. A., F. Villa, and T. Lpez-Ros, "Surface waves in finite one-dimensional photonic crystals: mode coupling," Opt. Commun., Vol. 216, 379-384, 2003.
doi:10.1016/S0030-4018(02)02361-1

31. Ramos-Mendieta, F. and P. Halevi, "Electromagnetic surface modes of a dielectric superlattice: The supercell method," J. Opt. Soc. Am. B, Vol. 14, No. 2, 370-381, 1997.
doi:10.1364/JOSAB.14.000370

32. Ozbay, E., A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, "Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods," Phys. Rev. B, Vol. 50, No. 3, 1945-1948, 1994.
doi:10.1103/PhysRevB.50.1945

33. Gonzalo, R., B. Martinez, and P. de Maagt, "The effect of dielectric permittivity on the properties of photonic bandgap devices ," Microw. Opt. Technol. Lett., Vol. 23, No. 2, 92-95, 1999.
doi:10.1002/(SICI)1098-2760(19991020)23:2<92::AID-MOP9>3.0.CO;2-J

34. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis ," Opt. Express, Vol. 8, No. 3, 173-190, 2001.
doi:10.1364/OE.8.000173

35. Reynolds, A. L., H. M. H. Chong, I. G. Thayne, J. M. Arnold, and P. de Maagt, "Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures," IEEE Trans. Microw. Theory and Tech., Vol. 49, No. 7, 1254-1261, 2001.
doi:10.1109/22.932244