Vol. 20
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-01-16
Large Signal Equivalent Circuit Model for Package AlGaN /GaN HEMT
By
Progress In Electromagnetics Research Letters, Vol. 20, 27-36, 2011
Abstract
In this paper, a large signal equivalent circuit empirical model based on Anglov model for ceramic packed high power AlGaN/GaN HEMT has been proposed. A temperature-dependent drain current model, including self-heating effect, has been presented, and good agreement is achieved between measurement results and the calculated results at different temperature. The nonlinear capacitance models are modeled by the directly measured microwave scattering (S) parameters and multi-bias small signal equivalent model (SSECM) of packed device. A power amplifier based on large size AlGaN/GaN HEMT with a total gate periphery of 36 mm has been designed by using the proposed model for validation purpose, and the simulated results fit the measurement results well at different temperature.
Citation
Lei Sang, Yuehang Xu, Yongbo Chen, Yunnchuan Guo, and Rui-Min Xu, "Large Signal Equivalent Circuit Model for Package AlGaN /GaN HEMT," Progress In Electromagnetics Research Letters, Vol. 20, 27-36, 2011.
doi:10.2528/PIERL10110701
References

1. Mishra, U. K., L. Shen, T. E. Kazior, and Y.-F. Wu, "GaN-based RF power devices and amplifiers," Proc. of the IEEE, Vol. 96, No. 2, 287-305, Feb. 2008.
doi:10.1109/JPROC.2007.911060

2. Mari, D., M. Bernardoni, G. Sozzi, et al., "A physical large-signal model for GaN HEMTs including self-heating and trap-related dispersion," Microelectronics Reliability, Oct. 16, 2010.

3. Jarndal, A., et al. "Large-signal model for AlGaN/GaN HEMTs suitable for RF switching-mode power amplifis design," Solid-state Electronics, Vol. 54, No. 7, 696-700, Jul. 2010.
doi:10.1016/j.sse.2010.03.017

4. Angelov, I., V. Desmaris, K. Dynefors, P. A. Nilsson, N. Rorsman, and H. Zirath, "On the large-signal modeling of AlGaN/GaN HEMTs and SiC MESFETs," Gallium Arsenide and Other Semicond. Appl. Symp., 309-312, Oct. 2005.

5. Xu, Y., Y. Guo, R. Xu, B. Yan, and Y. Wu, "An support vector regression based nonlinear modeling method for SiC MESFET," Progress In Electromagnetics Research Letter, Vol. 2, 103-114, 2008.
doi:10.2528/PIERL07122102

6. Yuk, K. S., G. R. Branner, and D. J. McQuate, "A wideband multiharmonic empirical large-signal model for high-power GaN HEMTs with self-heating and charge-trapping effects," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 12, 3322-3332, Dec. 2009.
doi:10.1109/TMTT.2009.2033299

7. Jardel, O., F. de Groote, T. Reveyrand, et al. "An electrothermal model for AlGaN/GaN power HEMTs including trapping effects to improve large-signal simulation results on high VSWR," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2660-2669, Dec. 2007.
doi:10.1109/TMTT.2007.907141

8. Dahmani, S., E. S. Mengistu, and G. Kompa, "Electro-thermal modeling of large-size GaN HEMTs," German Microwave Conference (GeMIC), 2008.

9. Tajima, Y., "100W GaN HEMT modeling," Microwave Journal, May 2007.

10. Jarndal, A. and C. Kompa, "An accurate small-signal model for AlGaN-GaN HEMT suitable for scalable larger-signal model construction," IEEE Microwave Wireless Components Letter, Vol. 16, No. 6, 333-335, Jun. 2006.
doi:10.1109/LMWC.2006.875626

11. Lu, J., Y. Wang, L. Ma, and Z. Yu, "A new small-signal modeling and extraction method in AlGaN/GaN HEMTs," Solid-state Electronics, Vol. 52, No. 1, 115-120, Jan. 2008.
doi:10.1016/j.sse.2007.07.009

12. Khalaf, Y. A., "Systematic optimization technique for MESFET modeling,", Doctor Dissertation, Virginia Polytechnic Institute and State University, 2000.

13. Gao, J., X. Li, H. Wang, and G. Boeck, "A new method for determination of parasitic capacitances for PHEMTs," Semicond. Sci. Technol., Vol. 20, 586-591, 2005.
doi:10.1088/0268-1242/20/6/018

14. Qian, F., J. H. Leach, and H. Morkoc, "Small signal equivalent circuit modeling for AlGaN/GaN HFET: Hybrid extraction method for determining circuit elements of AlGaN/GaN HFET," Proceedings of the IEEE, Vol. 98, No. 7, Jul. 2010.

15. Xu, Y., Y. Guo, R. Xu, B. Yan, and Y. Wu, "An improved small-signal equivalent circuit model for 4H-SiC power MESFETs," Microw. and Opt. Techn. Lett., Vol. 50, No. 2, 1455-1458, 2008.
doi:10.1002/mop.23397

16. Jimenez Martin, , J. L., V. Gonzalez-Posadas, J. E. Gonzalez-Garcia, F. J. Arques-Orobon, L. E. Garcia Munoz, and D. Segovia-Vargas, "Dual band high efficiency class e power amplifier based on CRLH diplexer," Progress In Electromagnetics Research, Vol. 97, 217-240, 2009.
doi:10.2528/PIER09071609

17. Zhang, B., Y.-Z. Xiong, L.Wang, S. Hu, T.-G. Lim, Y.-Q. Zhuang, and L.-W. Li, "A d-band power amplifier with 30-GHz bandwidth and 4.5dBm Psat for high-speed communication system," Progress In Electromagnetics Research, Vol. 107, 161-178, 2010.
doi:10.2528/PIER10060806