Vol. 16
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-01-31
Floating Interpolation Stencil Topology-Based Ie-FFT Algorithm
By
Progress In Electromagnetics Research M, Vol. 16, 245-259, 2011
Abstract
The integral equation fast Fourier transform (IE-FFT) is a fast algorithm for 3D electromagnetic scattering and radiation problems based on the interpolation of the Green's function. In this paper, a novel floating interpolation stencil topology is used to improve the IE-FFT algorithm. Compared to the traditional interpolation stencil topology, it can further reduce the storage and CPU time for the IE-FFT algorithm. The reduction is especially significant for volume integral equations. Furthermore, the accuracy of the algorithm is still good though the near-interaction element numbers are reduced. Finally, some numerical results including perfectly electric conductors, dielectric objects, composite conducting and dielectric objects are given to demonstrate the performance of the present method.
Citation
Jiliang Yin, Jun Hu, Zai-Ping Nie, Xiang Feng, and Shiquan He, "Floating Interpolation Stencil Topology-Based Ie-FFT Algorithm," Progress In Electromagnetics Research M, Vol. 16, 245-259, 2011.
doi:10.2528/PIERM10103104
References

1. Mautz, J. R. and R. F. Harrington, "H-field, E-field and combined-field solution for conducting bodies of revolution," AEU, Vol. 32, No. 4, 157-164, 1978.

2. Lu, C. C. and W. C. Chew, "A coupled surface-volume integral equation approach for the calculation of electromagnetic scattering from composite metallic and material targets," IEEE Trans. Antennas Propagat., Vol. 48, No. 12, 1866-1868, Dec. 2000.
doi:10.1109/8.901277

3. Sarkar, T. K., E. Arvas, and S. M. Rao, "Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies," IEEE Trans. Antennas Propagat., Vol. 34, 635-640, May 1986.
doi:10.1109/TAP.1986.1143871

4. Song, J. M. and W. C. Chew, "Multilevel fast multipole algorithm for solving combined field integral equation of electromagnetic scattering," Microw. Opt. Tech. Lett., Vol. 10, No. 1, 14-19, Sep. 1995.
doi:10.1002/mop.4650100107

5. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

6. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Science, Vol. 31, No. 5, 1225-1251, 1996.
doi:10.1029/96RS02504

7. Bindiganavale, S. S., J. L. Volakis, and H. Anastassiu, "Scattering from planar structures containing small features using the adaptive integral method (AIM)," IEEE Trans. Antennas Propagat., Vol. 46, 1867-1878, Dec. 1998.
doi:10.1109/8.743831

8. Phillips, J. R. and J. K. White, "A Precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Trans. Computer-aided Design of Integrated Circuit and Systems, Vol. 16, 1059-1072, Oct. 1997.

9. Nie, X., L.-W. Li, N. Yuan, and Y. T. Soon, "Pre-corrected FFT algorithm for solving combined field integral equations in electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 8, 1171-1187, 2002.
doi:10.1163/156939302X00697

10. Fasenfest, B. J., F. Capolino, D. R. Wilton, D. R. Jackson, and N. J. Champagne, "A fast MoM solution for large arrays: Green's function interpolation with FFT," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 161-164, Dec. 2004.
doi:10.1109/LAWP.2004.833713

11. Seo, S. M. and J. F. Lee, "A fast IE-FFT algorithm for solving PEC scattering problems," IEEE Trans. Magn., Vol. 41, 1476-1479, May 2005.

12. Ozdemir, N. A. and J. F. Lee, "IE-FFT algorithm for a nonconformal volume integral equation for electromagnetic scattering from dielectric objects," IEEE Trans. Magn., Vol. 44, 1398-1401, Jun. 2008.
doi:10.1109/TMAG.2008.915842

13. Li, L., H. G. Wang, and C. H. Chan, "An improved multilevel Green's function interpolation method with adaptive phase compensation," IEEE Trans. Antennas Propagat., Vol. 56, No. 5, 1381-1393, May 2008.
doi:10.1109/TAP.2008.922611

14. Lai, B., X. An, et al. "A novel Gaussian interpolation formula-based IE-FFT algorithm for solving EM scattering problems," Microwave and Optical Technology Letters, Vol. 51, No. 09, 2233-2236, Sep. 2009.
doi:10.1002/mop.24523

15. Chen, Z. K., S. L. Chai, H. Yang, and J. J. Mao, "Precorrected-FFT method for EM scattering from composite metallic-dielectric objects," Chinese Sci. Bull., Vol. 55, 656-663, 2010.
doi:10.1007/s11434-009-0237-9

16. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 5, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

17. Graglia, R. D., D. R. Wilton, and A. F. Peterson, "High order interpolatory vector bases for computational electromagnetics," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 329-342, Mar. 1997.
doi:10.1109/8.558649

18. Hu , J., Z. Nie, and X. Gong, "Solving electromagnetic scattering and radiation by FMM with curvilinear RWG basis," Chinese Journal of Electronics, Vol. 12, No. 3, 457-460, 2003.

19. Schaubert, D. H., D. R. Wilton, and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Trans. Antennas Propagat., Vol. 32, No. 1, 77-85, Jan. 1984.
doi:10.1109/TAP.1984.1143193

20. Hu, J. and Z. Nie, "Improved electric field integral equation (IEFIE) for analysis of scattering from 3-D conducting structures," IEEE Trans. Electromagn. Compat., Vol. 49, No. 3, 644-648, Aug. 2007.
doi:10.1109/TEMC.2007.902182

21. Guo, J.-L., J.-Y. Li, and Q.-Z. Liu, "Analysis of arbitrarily shaped dielectric radomes using adaptive integral method based on volume integral equation," IEEE Trans. Antennas Propagat., Vol. 54, No. 7, 1910-1916, Jul. 2006.
doi:10.1109/TAP.2006.877157