Vol. 20
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-01-24
Design of a High-Gain Cavity-Backed Slot Antenna with Mushroom Cells and Bent Ground Walls
By
Progress In Electromagnetics Research Letters, Vol. 20, 69-76, 2011
Abstract
This paper presents a cavity backed slot antenna design with high gain and relatively small size. The large ground plane of the original design is cut 75%. Mushroom cells, ground plane orientation, and bending edges in the ground plane have been employed to improve the antenna gain. A 19.25 dB maximum gain is obtained with an average gain of 18.2 dB in the entire operating band.
Citation
Abdelnasser Eldek, "Design of a High-Gain Cavity-Backed Slot Antenna with Mushroom Cells and Bent Ground Walls," Progress In Electromagnetics Research Letters, Vol. 20, 69-76, 2011.
doi:10.2528/PIERL10103002
References

1. Oh, S. S., J. Heo, D. H. Kim, J. W. Lee, M. S. Song, and Y. S. Kim, "Broadband millimeter-wave planar antenna array with a waveguide and microstrip feed network," Microwave Optical Technology Letters, Vol. 42, No. 4, 283-287, Aug. 20, 2004.
doi:10.1002/mop.20279

2. Navarro, J., "Wide-band, low-profile millimeter wave antenna array ," Microwave Optical Technology Letters, Vol. 34, No. 4, 253-255, Aug. 2002.
doi:10.1002/mop.10430

3. Liu, D., B. Gaucher, U. Pfeiffer, and J. Grzyb, Advanced Millimeter-Wave Technologies, 170-172, Hoboken, Wiley, NJ, 2009.
doi:10.1002/9780470742969

4. Weily, A. R., T. S. Bird, and Y. J. Guo, "A reconfigurable high-gain partially reflecting surface antenna," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 11, 3382-3390, Nov. 2008.
doi:10.1109/TAP.2008.2005538

5. Islam, M. T., M. N. Shakib, and N. Misran, "Design analysis of high gain wideband L-probe fed microstrip patch antenna," Progress In Electromagnetics Research Letters, Vol. 95, 397-407, 2009.

6. Vettikalladi, H., O. Lafond, and M. Himdi, "High-efficient and high-gain superstrate antenna for 60-GHz indoor communication," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1422-1425, 2009.
doi:10.1109/LAWP.2010.2040570

7. Foroozesh, A. and L. Shafai, "Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 258-270, Feb. 2010.
doi:10.1109/TAP.2009.2037702

8. Pan, B., Y. Li, G. E. Ponchak, J. Papapolymerou, and M. M. Tentzeris, "A 60-GHz CPW-fed high-gain and broadband integrated horn antenna," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 1050-1056, Apr. 2009.
doi:10.1109/TAP.2009.2015815

9. Chen, C. and D. Cheng, "Optimum element lengths for Yagi-Uda arrays," IEEE Transactions on Antennas and Propagation, Vol. 23, No. 1, 8-15, 1975.
doi:10.1109/TAP.1975.1141001

10. Bojsen, J. H., H. S. Jacobsen, E. Nilsson, and J. B. Andersen, "Maximum gain of Yagi-Uda arrays," Electronics Letters, Vol. 7, No. 18, 531-532, 1971.
doi:10.1049/el:19710360

11. Lim, S., "Design of a multidirectional, high-gain compact Yagi antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 418-420, 2009.

12. Galejs, J., "Admittance of a rectangular slot which is backed by a rectangular cavity," IEEE Transactions on Antennas and Propagation, Vol. 1, No. 2, 119-126, Mar. 1963.
doi:10.1109/TAP.1963.1138001

13. Lagerlof, R. O. E., "Optimized cavity-backed slot antennas for phased arrays," European Microwave Conference, 293-297, Oct. 1974.

14. Li, Q. and Z. Shen, "Inverted microstrip-fed cavity-backed slot antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 1, 98-101, 2002.

15. Yeganeh, S. H. and C. Birtcher, "Theoretical and experimental studies of cavity-backed slot antenna excited by a narrow strip," IEEE Transactions on Antennas and Propagation , Vol. 41, No. 2, 236-241, Feb. 1993.
doi:10.1109/8.214618

16. Vouvakis, M. N., C. A. Balanis, C. R. Birtcher, and A. C. Polycarpou, "Multilayer effects on cavity-backed slot antennas," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, 880-887, Mar. 2004.
doi:10.1109/TAP.2004.824672

17. Tan, W., Z. Shen, Z. Shao, and M. Fujise, "A gain-enhanced microstrip-fed cavity-backed slot antenna," Proceedings of Asia-Pacific Microwave Conference, Vol. 2, 789-792, Dec. 2005.

18. Zhang, Q. Y., Q. X. Chu, and H. Q. Ma, "High-gain broad-band cavity-backed slot antenna for WLAN applications," International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1866-1868, Apr. 2008.
doi:10.1109/ICMMT.2008.4540846

19. Qu, S. W., C. H. Chan, and Q. Xue, "Wideband and high-gain composite cavity-backed crossed triangular bowtie dipoles for circularly polarized radiation," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 10, 3157-3164, Oct. 2010.
doi:10.1109/TAP.2010.2055792

20. Qu, S. W., J. L. Li, and Q. Xue, "High-gain wideband leaky-wave antenna excited by bowtie element," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2469-2474, Aug. 2008.
doi:10.1109/TAP.2008.927511

21. Tan, W., Z. Shen, and Z. Shao, "Radiation of high-gain cavity-backed slot antennas through a two-layer superstrate," IEEE Antennas and Propagation Magazine, Vol. 50, No. 3, 78-87, 2008.
doi:10.1109/MAP.2008.4563567

22. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovich, "High-impedance electromagnetic surface with a forbidden frequency band," IEEE Transaction on Microwave Theory and Techniques, Vol. 47, 2059-2074, Nov. 1999.