Vol. 112
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-01-24
Plane Wave Scattering by a Spherical Dielectric Particle in Motion: a Relativistic Extension of the Mie Theory
By
Progress In Electromagnetics Research, Vol. 112, 349-379, 2011
Abstract
Light scattering from small spherical particles has applications in a vast number of disciplines including astrophysics, meteorology optics and particle sizing. Mie theory provides an exact analytical characterization of plane wave scattering from spherical dielectric objects. There exist many variants of the Mie theory where fundamental assumptions of the theory has been relaxed to make generalizations. Notable such extensions are generalized Mie theory where plane waves are replaced by optical beams, scattering from lossy particles, scattering from layered particles or shells and scattering of partially coherent (non-classical) light. However, no work has yet been reported in the literature on modifications required to account for scattering when the particle or the source is in motion relative to each other. This is an important problem where many applications can be found in disciplines involving moving particle size characterization. In this paper we propose a novel approach, using special relativity, to address this problem by extending the standard Mie theory for scattering by a particle in motion with a constant speed, which may be very low, moderate or comparable to the speed of light. The proposed technique involves transforming the scattering problem to a reference frame co-moving with the particle, then applying the Mie theory in that frame and transforming the scattered field back to the reference frame of the observer.
Citation
Chintha C. Handapangoda, Malin Premaratne, and Pubudu Nishantha Pathirana, "Plane Wave Scattering by a Spherical Dielectric Particle in Motion: a Relativistic Extension of the Mie Theory," Progress In Electromagnetics Research, Vol. 112, 349-379, 2011.
doi:10.2528/PIER10102901
References

1. Shiozawa, T., "Electromagnetic scattering by a moving small particle," J. Appl. Phys., Vol. 39, 2993-2997, 1968.
doi:10.1063/1.1656720

2. Reid, J. P. and L. Mitchem, "Laser probing of single-aerosol droplet dynamics," Annu. Rev. Phys. Chem., Vol. 57, 245-271, 2006.
doi:10.1146/annurev.physchem.57.032905.104621

3. Konig, G., K. Anders and A. Frohn, "A new light-scattering technique to measure the diameter of periodically generated moving droplets ," J. Aerosol. Sci., Vol. 17, 157-167, 1986.
doi:10.1016/0021-8502(86)90063-7

4. Beuthan, J., O. Minet, J. Helfmann, M. Herrig and G. Muller, "The spatial variation of the refractive index in biological cells," Phys. Med. Biol., Vol. 41, 369-382, 1996.
doi:10.1088/0031-9155/41/3/002

5. Kelly, K. L., E. Coronado, L. L. Zhao and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape and dielectric environment," J. Phys. Chem. B, Vol. 107, 668-677, 2003.
doi:10.1021/jp026731y

6. Quinten, M. and J. Rostalski, "Lorenz-Mie theory for spheres immersed in an absorbing host medium," Part. Part. Syst.Charact., Vol. 13, 89-96, 1996.
doi:10.1002/ppsc.19960130206

7. Gouesbet, G., "Generalized Lorenz-Mie theory and applications," Part. Part. Syst. Charact., Vol. 11, 22-34, 1994.
doi:10.1002/ppsc.19940110105

8. Purcell, E. M. and C. R. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," The Astrophys. J., Vol. 186, 705-714, 1973.
doi:10.1086/152538

9. Acquista, C., "Validity of modifying Mie theory to describe scattering by nonspherical particles," Appl. Opt., Vol. 17, 3851-3852, 1978.
doi:10.1364/AO.17.003851

10. Censor, D., "Non-relativistic scattering in the presence of moving objects: The Mie problem for a moving sphere," Progress In Electromagnetics Research, Vol. 46, 1-32, 2004.
doi:10.2528/PIER03072401

11. Park, S. O. and C. A. Balanis, "Analytical technique to evaluate the asymptotic part of the impedance matrix of Sommerfeld-Type integrals ," IEEE Trans. Antennas Propag., Vol. 45, 798-805, 1997.
doi:10.1109/8.575625

12. Felderhof, B. U. and R. B. Jones, "Addition theorems for spherical wave solutions of the vector Helmholtz equation," J. Math. Phys., Vol. 28, 836-839, 1987.
doi:10.1063/1.527572

13. Zutter, D. D., "Fourier analysis of the signal scattered by three-dimensional objects in translational motion-I," Appl. Sci. Res., Vol. 36, 241-256, 1980.
doi:10.1007/BF00385766

14. Chu, W. P. and D. M. Robinson, "Scattering from a moving spherical particle by two crossed coherent plane waves," Appl. Opt., Vol. 16, 619-626, 1977.
doi:10.1364/AO.16.000619

15. Borowitz, S. and L. A. Bornstein, A Contemporary View of Elementary Physics, McGraw-Hill, 1968.

16. Rothman, M. A., Discovering the Natural Laws: The Experimen-tal Basis of Physics, Dover Publications Inc., 1989.

17. Einstein, A., Relativity: The Special and General Theory, Methuen & Co. Ltd., 1924.

18. Lee, A. R. and T. M. Kalotas, "Lorentz transformations from the first postulate," Am. J. Phys., Vol. 43, 434-437, 1975.
doi:10.1119/1.9807

19. Bohren, C. F. and D. R. Huffman, Absorption and Scattering by of Light by Small Particles, John Wiley & Sons Inc., 1983.

20. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 1972.

21. McCall, M. and D. Censor, "Relativity and mathematical tools:Waves in moving media," Am. J. Phys., Vol. 75, 1134-1140, 2007.
doi:10.1119/1.2772281

22. Jackson, J. D., Classical Electrodynamics, John Wiley, 1965.

23. Bachman, R. A., "The converse relativistic Doppler theorem," Am. J. Phys., Vol. 64, 493-494, 1995.
doi:10.1119/1.18198

24. Wang, Z. B., B. S. Luk'yanchuk, M. H. Hong, Y. Lin and T. C. Chong, "Energy flow around a small particle investigated by classical Mie theory," Phys. Rev. B, Vol. 70, 035418, 2004.