Vol. 16
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-12-09
Eletromagnetic Simulation of Initially Charged Structures with a Discharge Source
By
Progress In Electromagnetics Research M, Vol. 16, 95-104, 2011
Abstract
A methodology for electromagnetic simulation of initially charged structure with a discharge source (ICSWDS) has been investigated. The ICSWDS can be applied to a lot of areas such as high power electromagnetic (HPEM) radiators. As a method of electromagnetically simulating the ICSWDS, converting initially charged structures into equivalent transient structures and modeling discharge sources by using step voltage sources have been found. A Blumlein pulse forming line (PFL) has been simulated, manufactured and tested to validate this approach. A measured waveform from the test has a good agreement with a simulated waveform.
Citation
Ji Heon Ryu, "Eletromagnetic Simulation of Initially Charged Structures with a Discharge Source," Progress In Electromagnetics Research M, Vol. 16, 95-104, 2011.
doi:10.2528/PIERM10102505
References

1. Giri, D. V., High Power Electromagnetic Radiators, Harvard University Press, 2004.

2. Benford, J., J. A. Swegle, and E. Schamiloglu, High Power Microwave, 2nd Ed., Taylor & Francis, 2007.
doi:10.1201/9781420012064

3. Senthil Kumar, D. and M. Joy Thomas, "Design and development of a pulsed power system for a vircator based HPM source," INCEMIC Proceedings, 2006.

4. Verma, R., A Shyam, S. Chaturvedi, R. Kumar, D. Lathi, V. Chaudhary, R. Shukla, K. Debnath, S. Sharma, J. Sonara, K. Shah, and B. Adhikary, "Portable & low cost giga-watt pulsed power source for intense electron beam generation," IEEE Pulsed Power Conference, 2005.

5. Giri, D. V., F. M. Tesche, M. D. Abdalla, M. C. Skipper, and M. Nyffeler, "Switched oscillators and their integration into helical antennas," IEEE Transactions on Plasma Science, Vol. 38, June 2010.
doi:10.1109/TPS.2010.2047657

6. Cheng, D. K., Field and Wave Electromagnetics, 2nd Ed., Addison-Wesley Publishing Company, 1992.

7. Istenic, M., I. R. Smith, and B. M. Novac, "Dynamic resistance calculation of nanosecond spark-gaps," IEEE Pulsed Power Conference, 2005.

8. Frostm, C. A., T. H. Martin, P. E. Patterson, L. F. Rinehart, G. J. Rohwein, L. D. Roose, J. F. Aurand, and M. T. Buttram, "Ultrafast gas switching experiments," 9th IEEE International Pulse Power Conference, Digest of Technical Paper, 1993.

9. Ahn, J. W., S.-Y. Song, J. H. Ryu, and M.-S. Jung, "A marx-type electromagnetic pulse generator," Ultra-wideband, Short-pulse Electromagnetics, Vol. 7, Springer, 2007.

10. Carboni, V., S. Leandro, H. Lachner, D. Giri, and J. Lehr, "The breakdown fields and risetimes of select gases under the codition of fast charging (~20 ns and less) and high pressures (20~100atmospheres)," Pulsed Power Plasma Science, PPPS-2001, Digest of Technical Papers , 2001.

11. Lehr, J. M., C. E. Baum, W. D. Prather, and F. J. Agee, "Aspects of ultra fast spark gap switching for UWB HPM generation," Pulsed Power Conference, Digest of Technical Papers, 1997.

12. Bojovschi, A., W. Rowe, and A. K. L. Wong, "Electromagnetic field intensity generated by partial discharge in high voltage insulating materials," Progress In Electromagnetics Research, Vol. 104, 167-182, 2010.
doi:10.2528/PIER10010803