Vol. 19
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-11-29
Fiber Optical Parametric Oscillator with Switchable and Wavelength-Spacing Tunable Multi-Wavelength
By
Progress In Electromagnetics Research Letters, Vol. 19, 83-92, 2010
Abstract
We propose a switchable and wavelength spacing tunable multi-wavelength fiber optical parametric oscillator (MW-FOPO) with two cascaded fiber Bragg gratings (FBGs). The MW-FOPO can operate at two multi-wavelength lasing modes with different wavelength spacings, which can be switched by adjusting some polarization controllers (PCs). Stable multi-wavelength lasing at those two different operation modes at room temperature is achieved due to the four wave mixing (FWM) effect and the broadband gain of the fiber optical parametric amplifier (FOPA) based on a highly nonlinear fiber. The wavelength spacing of the proposed MW-FOPO can be tuned by adjusting the wavelength of the pump light or the central wavelength of the FBG at the two multi-wavelength lasing modes.
Citation
Bing Sun, Daru Chen, and Sailing He, "Fiber Optical Parametric Oscillator with Switchable and Wavelength-Spacing Tunable Multi-Wavelength," Progress In Electromagnetics Research Letters, Vol. 19, 83-92, 2010.
doi:10.2528/PIERL10101904
References

1. Ho, M., K. Uesaka, Y. Akasaka, and L. G. Kazovsky, "200-nm-bandwidth fiber optical amplifier combing parametric and Raman gain," J. Lightwave Technol., Vol. 19, 977-981, 2001.
doi:10.1109/50.933292

2. Marhid, M. E., K. K.-Y. Wong, G. Kalogerakis, and L. G. Kazovsky, "Toward pracitical fiber optical parametric amplifiers and oscillators," Optics & Photonics News, 21-25, 2004.

3. Torounidis, T., P. A. Andrekson, and B. Olsson, "Fiber-optical parametric amplifier with 70-dB gain," IEEE Photon. Technol. Lett., Vol. 18, 1194-1196, 2006.
doi:10.1109/LPT.2006.874714

4. Wong, K. K.-Y., K. Shimizu, K. Uesaka, G, Kalogerakis, M. E. Marhic, and L. G. Kazovsky, "Continuous-wave fiber optical parametric amplifier with 60-dB gain using a novel two segment design," IEEE Photon. Technol. Lett., Vol. 15, 1707-1709, 2003.
doi:10.1109/LPT.2003.819706

5. Gao, M., C. Jiang, W. Hu, and J.Wang, "Optimized design of two-pump fiber optical parametric amplifier with two-section nonlinear fibers using genetic algorithm," Opt. Express, Vol. 12, 5603-5613, 2004.
doi:10.1364/OPEX.12.005603

6. Dahan, D. and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: A route to all optical buffering," Opt. Express, Vol. 13, 6234-6249, 2005.
doi:10.1364/OPEX.13.006234

7. Wong, K. K.-Y., G. W. Lu, and L. K. Chen, "Polarization-interleaved WDM signals in a fiber optical parametric amplifier with orthogonal pumps," Opt. Express, Vol. 15, 56-61, 2007.
doi:10.1364/OE.15.000056

8. Singh, S. P., R. Gangwar, and N. Singh, "Nonlinear scattering effects in optical fibers," Progress In Electromagnetics Research, Vol. 74, 379-405, 2007.
doi:10.2528/PIER07051102

9. Andalib, A., A. Rostami, and N. Grangpayeh, "Analytical investigation and evaluation of pulse broadening factor propagating through nonlinear optical fibers (traditional and optimum dispersion compensated fibers)," Progress In Electromagnetics Research, Vol. 79, 119-136, 2008.
doi:10.2528/PIER07092502

10. Marhic, M. E., K. K.-Y. Wong, L. G. Kazovsky, and T. E. Tsai, "Continuous-wave fiber optical parametric oscillator," Opt. Lett., Vol. 27, 1439-1441, 2002.
doi:10.1364/OL.27.001439

11. Lasri, J., P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon, Technol. Lett., Vol. 15, 1058-1060, 2003.
doi:10.1109/LPT.2003.815333

12. De Matos, C. J. S., J. R. Taylor, and K. P. Hansen, "Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber," Opt. Lett., Vol. 29, 983-985, 2004.
doi:10.1364/OL.29.000983

13. Wong, G. K. L., S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, "High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator," Opt. Express, Vol. 15, 2947-2952, 2007.
doi:10.1364/OE.15.002947

14. Yang, S., Y. Zhou, J. Li, and K. K.-Y. Wong, "Actively mode-locked fiber optical parametric oscillator," IEEE J. Sel. Topics Quantum Electron., Vol. 15, 393-398, 2009.
doi:10.1109/JSTQE.2008.2011920

15. Staring, A. A. M., L. H. Spiekman, J. J. M. Binsma, E. J. Jansen, T. V. Dongen, P. J. A. Thijs, M. K. Smit, and B. H. Verbeek, "A compact nine-channel multiwavelength laser," IEEE Photon. Technol. Lett., Vol. 8, 1139-1141, 1996.
doi:10.1109/68.531815

16. Talaverano, L., S. Abad, S. Jarabo, and M. Lpez-Amo, "Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability," J. Lightwave Technol., Vol. 19, 553-558, 2001.
doi:10.1109/50.920854

17. Lu, Z. G., F. G. Sun, G. Z. Xiao, and C. P. Grover, "A tunable multiwavelength fiber ring laser for measuring polarization-mode dispersion in optical fibers," IEEE Photon. Technol. Lett., Vol. 16, 1280-1282, 2004.
doi:10.1109/LPT.2004.826142

18. Shen, G. F., X. M. Zhang, H. Chi, and X. F. Jin, "Microwave/millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser," Progress In Electromagnetics Research, Vol. 80, 307-320, 2008.
doi:10.2528/PIER07112202

19. Hart, D. L., A. F. Judy, R. Roy, and J. W. Beletic, "Dynamical evolution of multiple four-wave-maxing processes in an optical fiber," Phys. Rev. E., Vol. 57, 4757-4774, 1998.
doi:10.1103/PhysRevE.57.4757

20. Thompson, J. R. and R. Roy, "Nonlinear dynamics of multiple four-wave-maxing processes in a single-mode fiber," Phys. Rev. A, Vol. 43, 4987-4996, 1991.
doi:10.1103/PhysRevA.43.4987

21. Liu, X.-M., "Theory and experiments for multiple four-wave-mixing processes with multifrequency pumps in optical fibers," Phys. Rev. A, Vol. 77, 043818, 2008.
doi:10.1103/PhysRevA.77.043818