Vol. 19
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-11-18
Size Reduction and Bandwidth Enhancement of a UWB Hybrid Dielectric Resonator Antenna for Short-Range Wireless Communications
By
Progress In Electromagnetics Research Letters, Vol. 19, 19-30, 2010
Abstract
In this paper, a novel hybrid dielectric resonator (DR) antenna for Ultrawideband (UWB) short-range wireless communications is proposed. The proposed antenna consists of a microstrip fed monopole loaded with a half cylindrical dielectric resonator antenna of Rogers RO3010 mounted on RT5880 substrate with a finite ground plane. The microstrip line fed monopole antenna is on the other side of the substrate. Compared to the conventional circular cylindrical DR mounted on a finite ground plane (reference antenna), the proposed antenna has a reduction in the antenna size by about 30% with a bandwidth increase by about 22% than the reference antenna. The proposed antenna has a good impedance bandwidth. In addition, the proposed antenna has a quite higher and more stable gain than that of reference antenna. Moreover, the antenna has a good omni-directional radiation patterns in the H-plane. The proposed antenna is considered a good candidate for UWB short-range wireless communication systems.
Citation
Osama Mohamed Haraz Ahmed, Abdel Sebak, and Tayeb Denidni, "Size Reduction and Bandwidth Enhancement of a UWB Hybrid Dielectric Resonator Antenna for Short-Range Wireless Communications," Progress In Electromagnetics Research Letters, Vol. 19, 19-30, 2010.
doi:10.2528/PIERL10101404
References

1. FCC "First report and order, revision of part 15 of the commission's rules regarding ultra-wideband transmission systems FCC,", 2002.

2. Haraz, O. M. and A.-R. Sebak, "A novel circularly polarized dielectric resonator antenna for UWB applications," IEEE APS-URSI Conference Toronto, 1-4, Jul. 11-17, 2010.
doi:10.2528/PIER04062901

3. Rao, Q., T. A. Denidni, A. R. Sebak, and R. H. Johnston, "On improving impedance matching of a CPW fed low permittivity dielectric resonator antenna," Progress In Electromagnetics Research, Vol. 53, 21-29, 2005.
doi:10.1109/LAWP.2007.909963

4. Chang, T.-H. and J.-F. Kiang, "Broadband dielectric resonator antenna with an offset well," IEEE Antennas Wireless Propag. Lett., Vol. 6, 564-567, 2007.
doi:10.1049/iet-map:20060029

5. Chair, R., A. A. Kishk, and K.-F. Lee, "Wideband stair-shaped dielectric resonator antennas," IET Microw. Antennas Propag., Vol. 1, No. 2, 299-305, Apr. 2007.
doi:10.1109/LAWP.2008.922051

6. Liang, X. L. and T. A. Denidni, "H-shaped dielectric resonator antenna for wideband applications," IEEE Antennas Wireless Propag. Lett., Vol. 7, 163-166, 2008.

7. Liang, X. L., T. A. Denidni, and L. N. Zhang, "Wideband L-shaped dielectric resonator antenna with a conformal inverted-trapezoidal patch feed," IEEE Trans. Antennas Propag., Vol. 57, 272-274, 2009.
doi:10.1109/TAP.2010.2041160

8. Ryu, K. S. and A. A. Kishk, "Ultrawideband dielectric resonator antenna with broadside patterns mounted on a vertical ground plane edge," IEEE Trans. Antennas and Propagation, Vol. 58, 1047-1053, Apr. 2010.
doi:10.1016/j.jeurceramsoc.2006.11.062

9. Suma, M. N., P. V. Bijumon, M. T. Sebastian, and P. Mohanan, "A compact hybrid CPW fed planar monopole/dielectric resonator antenna," Journal of the European Ceramic Society, Vol. 27, 3001-3004, 2007.
doi:10.1109/IWAT.2010.5464700

10. Ryu, K. S. and A. A. Kishk, "Ultra-wideband dielectric resonator antennas," 2010 International Workshop on Antenna Technology (iWAT), 1-4, Mar. 2010.
doi:10.1109/RWS.2010.5434141

11. Ryu, K. S. and A. A. Kishk, "UWB dielectric resonator antenna with low cross-polarization," 2010 IEEE Radio and Wireless Symposium (RWS), 551-554, Jan. 2010.
doi:10.1109/LAWP.2009.2034672

12. Guha, D., B. Gupta, and Y.-M. Antar, "New Pawn-shaped dielectric ring resonator loaded hybrid monopole antenna for improved ultrawide bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 8, No. 3, 1178-1181, 2009.

13. Ansoft Corp. "HFSS, v10,", 2007.

14. CST Microwave Studio, ver. 2008, Computer Simulation Technology, Framingham, MA .