Vol. 16
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-12-15
Combination of Inverse Fast Fourier Transform and Modified Particle Swarm Optimization for Synthesis of Thinned Mutually Coupled Linear Array of Parallel Half-Wave Length Dipole Antennas
By
Progress In Electromagnetics Research M, Vol. 16, 105-115, 2011
Abstract
In this paper, the authors propose a method based on the combination of inverse fast Fourier transform (IFFT) and modified particle swarm optimization for side lobe reduction of a thinned mutually coupled linear array of parallel half-wave length dipole antennas with specified maximum return loss. The generated pattern is broadside (φ=90 degree) in the horizontal plane. Mutual coupling between the half-wave length parallel dipole antennas has been taken care of by induced emf method considering the current distribution on each dipole to be sinusoidal. Directivity, first null beamwidth (FNBW), return loss of the thinned array is also calculated and compared with a fully populated array. Two cases have been considered, one with symmetric excitation voltage distribution and the other with asymmetric one. The method uses the property that for a linear array with uniform element spacing, an inverse Fourier transform relationship exists between the array factor and the element excitations. Inverse Fast Fourier Transform is used to calculate the array factor, which in turn reduces the computation time significantly. The element pattern of half-wave length dipole antenna has been assumed omnidirectional in the horizontal plane. Two examples are presented to show the flexibility and effectiveness of the proposed approach.
Citation
Narendra Nath Pathak, Banani Basu, and Gautam Mahanti, "Combination of Inverse Fast Fourier Transform and Modified Particle Swarm Optimization for Synthesis of Thinned Mutually Coupled Linear Array of Parallel Half-Wave Length Dipole Antennas," Progress In Electromagnetics Research M, Vol. 16, 105-115, 2011.
doi:10.2528/PIERM10101003
References

1. Balanis, C. A., Antenna Theory: Analysis and Design, 2nd Ed., John Wiley and Sons (Asia), 2003.

2. Quevedo-Teruel, O. and E. Rajo-Iglesias, "Ant colony optimiza-tion in thinned array synthesis with minimum sidelobe level," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 349-352, 2006.
doi:10.1109/LAWP.2006.880693

3. Mahanti, G. K., N. Pathak, and P. Mahanti, "Synthesis of thinned linear antenna arrays with fixed sidelobe level using real-coded genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 319-328, 2007.
doi:10.2528/PIER07061304

4. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. Antennas Propag., Vol. 42, No. 7, 993-999, 1994.
doi:10.1109/8.299602

5. Pathak, N., G. K. Mahanti, S. K. Singh, J. K. Mishra, and A. Chakraborty, "Synthesis of thinned planar circular array antennas using modified particle swarm optimization," Progress In Electromagnetics Research Letters, Vol. 12, 87-97, 2009.
doi:10.2528/PIERL09090606

6. Razavi, A. and K. Forooraghi, "Thinned arrays using pattern search algorithms," Progress In Electromagnetics Research, Vol. 78, 61-71, 2008.
doi:10.2528/PIER07081501

7. Bucci, O. M., T. Isernia, and A. F. Morabito, "A deterministic approach to the synthesis of pencil beams through planar thinned arrays," Progress In Electromagnetics Research, Vol. 101, 217-230, 2010.
doi:10.2528/PIER10010104

8. Haupt , R. L., "Interleaved thinned linear arrays," IEEE Trans. Antennas Propag., Vol. 53, No. 9, 2858-2864, 2005.
doi:10.1109/TAP.2005.854522

9. Schwartzman, L., "Element behavior in a thinned array," IEEE Trans. Antennas Propag., Vol. 15, No. 7, 571-572, 1967.
doi:10.1109/TAP.1967.1138989

10. Kennedy, J. and and R. C. Eberhart, "Particle swarm optimization ," Proc. IEEE Int. Conf. Neural Networks, 1942-1948, 1995.
doi:10.1109/ICNN.1995.488968

11. Li, W. T., X. W. Shi, and Y. Q. Hei, "An improved particle swarm optimization algorithm for pattern synthesis of phased arrays," Progress In Electromagnetics Research, Vol. 82, 319-332, 2008.
doi:10.2528/PIER08030904

12. Jin, N., Y. Rahmat-Samii, and , "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 556-567, March 2007.
doi:10.1109/TAP.2007.891552

13. Chen, T. B., Y. L. Dong, Y. C. Jiao, and F. S. Zhang, "Synthesis of circular antenna array using crossed particle swarm optimization algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1785-1795, 2006.
doi:10.1163/156939306779292273

14. Wang, L. L., D. G. Fang, and W. X. Sheng, "Combination of genetic algorithm (GA) and fast Fourier transform (FFT) for synthesis of arrays," Microwave and Optical Technology Letters, Vol. 37, No. 1, 56-59, April 2003.
doi:10.1002/mop.10823