Vol. 14
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-11-08
Acceleration of Slowly Convergent Series via the Generalized Weighted-Averages Method
By
Progress In Electromagnetics Research M, Vol. 14, 233-245, 2010
Abstract
A generalized version of the weighted-averages method is presented for the acceleration of convergence of sequences and series over a wide range of test problems, including linearly and logarithmically convergent series as well as monotone and alternating series. This method was originally developed in a partitionextrapolation procedure for accelerating the convergence of semiinfinite range integrals with Bessel function kernels (Sommerfeld-type integrals), which arise in computational electromagnetics problems involving scattering/radiation in planar stratified media. In this paper, the generalized weighted-averages method is obtained by incorporating the optimal remainder estimates already available in the literature. Numerical results certify its comparable and in many cases superior performance against not only the traditional weighted-averages method but also against the most proven extrapolation methods often used to speed up the computation of slowly convergent series.
Citation
Athanasios G. Polimeridis, Ruzica M. Golubovic Niciforovi, and Juan Mosig, "Acceleration of Slowly Convergent Series via the Generalized Weighted-Averages Method," Progress In Electromagnetics Research M, Vol. 14, 233-245, 2010.
doi:10.2528/PIERM10100702
References

1. Weniger, E. J., "Nonlinear sequence transformations: Computational tools for the acceleration of convergence and the summation of divergent series,", preprint arXiv:math/0107080v1, http://arXiv.org..
doi:10.2528/PIER07052502

2. Valagiannopoulos, C. A., "An overview of the Watson transformation presented through a simple example," Progress In Electromagnetics Research, Vol. 75, 137-152, 2007.
doi:10.1017/S030500410003187X

3. Longman, I. M., "Note on a method for computing infinite integrals of oscillatory functions," Proc. Cambridge Phil. Soc., Vol. 52, 764-768, 1956.

4. I'A, T. J., An Introduction to the Theory of Infinite Series,, Macmillan, 1965.
doi:10.1017/S0305004100044765

5. Scraton, R. E., "A note on the summation of divergent power series," Proc. Cambridge Phil. Soc., Vol. 66, 109-114, 1969.
doi:10.1093/comjnl/14.4.437

6. Wynn, P., "A note on the generalized Euler transformation," Computer J., Vol. 14, 441, 1971.
doi:10.1137/0716017

7. Smith, D. A. and W. F. Ford, "Acceleration of linear and logarithmic convergence," SIAM J. Num. Anal., Vol. 16, 223-240, 1979.
doi:10.1016/0377-0427(84)90017-7

8. Drummond, J. E., "Convergence speeding, convergence and summability," J. Comput. Appl. Math., Vol. 11, 145-159, 1984.

9. Shanks, D., "Nonlinear transformation of divergent and slowly convergent sequences," J. Math. Phys., Vol. 34, 1-42, 1955.
doi:10.1080/00207167308803075

10. Levin, D., "Development of nonlinear transformations for improving convergence of sequences," Int. J. Comput. Math. Section B, Vol. 3, 371-388, 1973.
doi:10.2307/2002183

11. Wynn, P., "On a device for computing the em (Sn) transformation," Math. Tables Aids Comput., Vol. 10, 91-96, 1956.
doi:10.1090/S0025-5718-1982-0645665-1

12. Smith, D. A. and W. F. Ford, "Numerical comparisons of nonlinear convergence accelerators," Math. Comput., Vol. 38, 481-499, 1982.

13. Brezinski, C. and M. R. Zaglia, Extrapolation Methods, Amsterdam, 1991.

14. Mosig, J. R. and F. E. Gardiol, "A dynamical radiation model for microstrip structures," Adv. Electron. Electron Phys., Vol. 59, 139-237, Academic Eds, New York, 1982.

15. Mosig, J. R. and F. E. Gardiol, "Analytical and numerical techniques in the Green's function treatment of microstrip antennas and scatterers," Proc. Inst. Elect. Eng., Vol. 130, 175-182, 1983.

16. Mosig, J. R., "Integral equation techniques," Numerical Techniques for Microwave and Millimeter-wave Passive Structures, 133-213.
doi:10.1109/8.725271

17. Michalski, K. A., "Extrapolation methods for Sommerfeld integraltails," IEEE Trans. Antennas and Propagat., Vol. 46, 1405-1418, 1998.
doi:10.2528/PIER08102405

18. Li, H., H.-G. Wang, and H. Zhang, "An improvement of the GeEsselle's method for the evaluation of the Green's functions in the shielded multilayered structures," Progress In Electromagnetics Research, Vol. 88, 149-161, 2008.
doi:10.2528/PIER10062310

19. Firuzeh, Z. H., G. A. E. Vandenbosch, R. Moini, S. H. H. Sadeghi, and R. Faraji-Dana, "Efficient evaluation of Green's functions for lossy half-space problems," Progress In Electromagnetics Research, Vol. 109, 139-157, 2010.
doi:10.1016/S0377-0427(00)00359-9

20. Homeier, H. H. H., "Scalar Levin-type sequence transformations," J. Comput. Appl. Math., Vol. 122, 81-147, 2000.
doi:10.2529/PIERS050104011634

21. Liu, P. and Z.-F. Li, "Efficient computation of Z-parameter for the rectangular planar circuit analysis," PIERS Online, Vol. 1, No. 5, 611-614, 2005.
doi:10.1109/8.817649

22. Fikioris, G., "An application of convergence acceleration methods," IEEE Trans. Antennas and Propagat., Vol. 47, 1758-1418, 1999.
doi:10.1007/BF01400966

23. Schneider, C., "Vereinfachte rekursionen zur Richardson-extrapolation in spezialfÄallen," Num. Math., Vol. 24, 177-184, 1975.
doi:10.1007/BF01930850

24. Håvie, T., "Generalized Neville type extrapolation schemes," BIT, Vol. 19, 204-213, 1979.
doi:10.1007/BF01396314

25. Brezinski, C., "A general extrapolation algorithm," Num. Math., Vol. 35, 175-180, 1980.

26. Sidi, A., "A user-friendly extrapolation method for oscillatory infinite integrals," Math. Comput., Vol. 51, 249-266, 1988.
doi:10.1145/356044.356051

27. Fessler, T., W. F. Ford, and D. A. Smith, "HURRY: An acceleration algorithm for scalar sequences and series," ACM Trans. Math. Software, Vol. 9, 346-354, 1983.