Vol. 110
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-11-12
The Analysis of 3D Model Characterization and Its Impact on the Accuracy of Scattering Calculations
By
Progress In Electromagnetics Research, Vol. 110, 125-145, 2010
Abstract
When employing computational methods for solving problems in electromagnetic scattering the resulting solutions are strongly determined by the geometry of the scatterer. Careful consideration must therefore be given to the computational geometry used in representing the scatterer. Here we show that the solution for a problem as simple as plane wave scattering off a PEC sphere is sensitive to the computational geometry used to represent the sphere. We show this by implementing 4 higher-order computational geometry schemes over 3 different tessellations resulting in 45 different representations of the sphere. Two methods for solving the scattering problem are implemented: the boundary-element method (BEM) based on the MFIE, and the physical optics (PO) method. Results are compared and insights are obtained into the performance of the various schemes to model surfaces accurately and efficiently. The comparison of the different schemes takes into consideration the required computational resources in implementing the schemes. Some unexpected results are discovered and explanations given.
Citation
Andrew Hellicar, John Kot, Geoff James, and Gregory Keith Cambrell, "The Analysis of 3D Model Characterization and Its Impact on the Accuracy of Scattering Calculations," Progress In Electromagnetics Research, Vol. 110, 125-145, 2010.
doi:10.2528/PIER10092703
References

1. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

2. Wandura, S., "Electric current basis functions for curved surfaces," Electromagnetics, Vol. 12, 77-91, 1992.
doi:10.1080/02726349208908297

3. Graglia, R. D., D. R. Wilton, and A. F. Peterson, "Higher order interpolatory vector basis for computational electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 45, 329-342, 1997.
doi:10.1109/8.558649

4. Wang, J. and J. P. Webb, "Hierarchal vector boundary elements and p-adaption for 3-D electromagnetic scattering," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 12, 1869-1879, 1997.
doi:10.1109/8.650207

5. Djordjevic, M. and B. M. Notaros, "Double higher order method of moments for surface integral equation modeling of metallic and dielectric antennas and scatterers," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 8, 2118-2128, 2004.
doi:10.1109/TAP.2004.833175

6. Valle, L., F. Rivas, and M. F. Catedra, "Combining the moment method with geometrical modelling by NURBS surfaces and Bézier patches," IEEE Transactions on Antennas and Propagation, Vol. 42, 373-381, 1994.
doi:10.1109/8.280724

7. Perez, J. and M. F. Catedra, "Application of physical optics to the RCS computation of bodies modeled with NURBS surfaces," IEEE Transactions on Antennas and Propagation, Vol. 42, 1404-1411, 1994.
doi:10.1109/8.320747

8. Kolundzija, B. M. and B. D. Popovic, "Entire-domain Galerkin method for analysis of metallic antennas and scatterers," IEE Proceedings H, Vol. 140, 1-9, 1993.

9. Babuska, I. and A. K. Aziz, "On the angle condition in the finite element method," Siam Journal on Numerical Analysis, Vol. 13, No. 2, 214-226, 1976.
doi:10.1137/0713021

10. Hellicar, A. D., J. S. Kot, G. James, and G. K. Cambrell, "Nodal- and edge-based vector basis functions on higher order and rational geometries in the BEM," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 4, 2008.

11. Hellicar, A. D. and J. S. Kot "Nodal- and edge-based vector basis functions on higher order and rational geometries in the BEM," Proceedings, U.R.S.I. International Symposium on Electromagnetic Theory, Vol. 42, Pisa, Italy, 2004.

12. Dietz, R., J. Hosheck, and B. Jüttler, "Rational patches on quadric surfaces," Computer Aided Design, Vol. 27, 27-40, 1995.
doi:10.1016/0010-4485(95)90750-A

13. Lyness, J. N. and D. Jespersen, "Moderate degree symmetric quadrature rules for the triangle," J. Inst. Maths Applics, Vol. 15, 19-32, 1975.
doi:10.1093/imamat/15.1.19

14. Poggio, A. J. and E. K. Miller, Computer Techniques for Electromagnetics, Chapter 4, Pergamon Press, 1973.

15. Duffy, M. G., "Quadrature over a pyramid or cube of integrands with a singularity at a vertex," Siam Journal on Numerical Analysis, Vol. 19, No. 6, 1260-1262, 1982.
doi:10.1137/0719090

16. Mie, G., "Beiträge zur optik trüber medien, speziell kolloidaler metallösungen," Ann. Physik, Vol. 25, No. 3, 377-445, 1908.
doi:10.1002/andp.19083300302

17. Mautz, J. R., "Computer program for the mie series solution of a sphere,", Tech. Rep. TR-77-12, Syracuse University, Dec. 1977.

18. Mohsen, A. A., A.-R. Helaly, and J. M. Fahmy, "The corrected induced surface current for arbitrary conducting objects at resonance frequencies," IEEE Transactions on Antennas and Propagation, Vol. 43, 448-451, 1995.
doi:10.1109/8.384188

19. Ruze, J., "Antenna tolerance theory --- A review," IEEE Proceedings, Vol. 54, 633-640, 1966.
doi:10.1109/PROC.1966.4784