Vol. 110
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-11-18
Transient Time-Dependent Electric Field of Dielectric Bodies Using the Volterra Integral Equation in Three Dimensions
By
Progress In Electromagnetics Research, Vol. 110, 179-197, 2010
Abstract
An accurate and flexible three-dimensional Volterra Time Domain Integral Equation (TDIE) algorithm is presented and implemented here to model the time-dependent electromagnetic field of arbitrarily shaped dielectric bodies. This development is motivated by the need for a modern high-resolution numerical tool that is capable of providing a full and comprehensive investigation of devices containing a diverse range of feature sizes or boundaries, in all three space dimensions plus time. Stability, accuracy and convergence of the algorithm are discussed and verified by means of canonical working examples.
Citation
Ahmed Al-Jarro, Philip Sewell, Trevor Mark Benson, Ana Vukovic, and John Paul, "Transient Time-Dependent Electric Field of Dielectric Bodies Using the Volterra Integral Equation in Three Dimensions," Progress In Electromagnetics Research, Vol. 110, 179-197, 2010.
doi:10.2528/PIER10092305
References

1. Jeong, Y. C. and B. G. Lee, "Characteristics of second-harmonic generation including third-order nonlinear interactions," IEEE Journal of Quantum Electronics, Vol. 37, 1292-1300, Oct. 2001.
doi:10.1109/3.952541

2. Chi, J. W. D., L. Chao, and M. K. Rao, "Time-domain large-signal investigation on nonlinear interactions between an optical pulse and semiconductor waveguides," IEEE Journal of Quantum Electronics, Vol. 37, 1329-1336, Oct. 2001.
doi:10.1109/3.952545

3. Moten, K., C. H. Durney, and T. G. Stockham, "Electromagnetic pulsed-wave radiation in spherical-models of dispersive biological substances," Bioelectromagnetics, Vol. 12, 319-333, Apr. 1991.
doi:10.1002/bem.2250120602

4. Dorn, O., H. Bertete-Aguirre, J. G. Berryman, and G. C. Papanicolaou, "A nonlinear inversion method for 3d electromagnetic imaging using adjoint fields," Inverse Problems, Vol. 15, 1523-1558, Dec. 1999.
doi:10.1088/0266-5611/15/6/309

5. Yee, K. S., "Numerical solution of initial boundary value problems involving maxwells equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693

6. Christopoulos, C., The Transmission Line Modelling Method: TLM, IEEE Press, 1995.
doi:10.1109/9780470546659

7. Holland, R., V. P. Cable, and L. C. Wilson, "Finite-volume time-domain (FVTD) techniques for EM scattering," IEEE Transactions on Electromagnetic Compatibility, Vol. 33, 281-294, Nov. 1991.
doi:10.1109/15.99109

8. Bennett, C. L. and H. Mieras, "Time domain scattering from open thin conducting surfaces," Radio Science, Vol. 16, 1231-1239, 1981.
doi:10.1029/RS016i006p01231

9. Mieras, H. and C. L. Bennett, "Space-time integral-equation approach to dielectric targets," IEEE Transactions on Antennas and Propagation, Vol. 30, 2-9, Jan. 1982.
doi:10.1109/TAP.1982.1142753

10. Rao, S. M. and D. R. Wilton, "Transient scattering by conducting surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 39, 56-61, Jan. 1991.
doi:10.1109/8.64435

11. Ergin, A. A., B. Shanker, and E. Michielssen, "Fast transient analysis of acoustic wave scattering from rigid bodies using a two-level plane wave time domain algorithm," Journal of the Acoustical Society of America, Vol. 106, 2405-2416, Nov. 1999.
doi:10.1121/1.428077

12. Yilmaz, A. E., J. M. Jin, and D. S.Weile, "A fast fourier transform accelerated marching-on-in-time algorithm for electromagnetic analysis," Electromagnetics, Vol. 21, 181-197, Apr. 2001.
doi:10.1080/02726340151105166

13. Rynne, B. P. and P. D. Smith, "Stability of time marching algorithms for the electric-field integral-equation," Journal of Electromagnetic Waves and Applications, Vol. 4, No. 12, 1181-1205, 1990.
doi:10.1163/156939390X00762

14. Vechinski, D. A. and S. M. Rao, "A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 40, 661-665, Jun. 1992.
doi:10.1109/8.144600

15. Sadigh, A. and E. Arvas, "Treating the instabilities in marching-on-in-time method from a different perspective," IEEE Transactions on Antennas and Propagation, Vol. 41, 1695-1702, Dec. 1993.
doi:10.1109/8.273314

16. Davies, P. J., "A stability analysis of a time marching scheme for the general surface electric field integral equation," Applied Numerical Mathematics, Vol. 27, 33-57, May 1998.
doi:10.1016/S0168-9274(97)00107-4

17. Manara, G., A. Monorchio, and R. Reggiannini, "A space-time discretization criterion for a stable time-marching solution of the electric field integral equation," IEEE Transactions on Antennas and Propagation , Vol. 45, 527-532, May 1997.
doi:10.1109/8.558668

18. Bluck, M. J. and S. P. Walker, "Time-domain BIE analysis of large three-dimensional electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 45, 894-901, May 1997.
doi:10.1109/8.575643

19. Pinello, W., A. Ruehli, and A. Cangellaris, "Stabilization of time domain solutions of EFIE based on partial element equivalent circuit models," IEEE Antennas and Propagation Society International Symposium 1997, Vol. 1-4, 966-969, Jul. 1997.

20. Dodson, S., S. P. Walker, and M. J. Bluck, "Implicitness and stability of time domain integral equation scattering analysis," Applied Computational Electromagnetics Society Journal, Vol. 13, 291-301, 1998.

21. Rao, S. M. and T. K. Sarkar, "Implicit solution of time-domain integral equations for arbitrarily shaped dielectric bodies," Microwave and Optical Technology Letters, Vol. 21, 201-205, May 1999.
doi:10.1002/(SICI)1098-2760(19990505)21:3<201::AID-MOP13>3.0.CO;2-1

22. Sarkar, T. K., W. Lee, and S. M. Rao, "Analysis of transient scattering from composite arbitrarily shaped complex structures," IEEE Transactions on Antennas and Propagation, Vol. 48, 1625-1634, Oct. 2000.

23. Vechinski, D. A., S. M. Rao, and T. K. Sarkar, "Transient scattering from 3-Dimensional arbitrarily-shaped dielectric bodies," Journal of the Optical Society of America, Vol. 11, 1458-1470, Apr. 1994.

24. Pocock, M. D., M. J. Bluck, and S. P. Walker, "Electromagnetic scattering from 3-D curved dielectric bodies using time-domain integral equations," IEEE Transactions on Antennas and Propagation, Vol. 46, 1212-1219, Aug. 1998.
doi:10.1109/8.718577

25. Yilmaz, A. E., J. M. Jin, and E. Michielssen, "Time domain adaptive integral method for surface integral equations," IEEE Transactions on Antennas and Propagation, Vol. 52, 2692-2708, Oct. 2004.

26. Gres, N. T., A. A. Ergin, E. Michielssen, and B. Shanker, "Volume-integral-equation-based analysis of transient electromagnetic scattering from three-dimensional inhomogeneous dielectric objects," Radio Science, Vol. 36, 379-386, May-Jun. 2001.

27. Schaubert, D. H., D. R. Wilton, and A. W. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies," IEEE Transactions on Antennas and Propagation, Vol. 32, 77-85, Jan. 1984.
doi:10.1109/TAP.1984.1143193

28. Silvester, P. P. and R. L. Ferrari, Finite Elements for Electrical Engineers, Cambridge University Press, Cambridge, UK, 1990.

29. Peterson, A. F., "Analysis of heterogeneous electromagnetic scatterers --- Research progress of the past decade," Proceedings of the IEEE, Vol. 79, 1431-1441, Oct. 1991.

30. Wilton, D. R., "Review of current status and trends in the use of integral-equations in computational electromagnetics," Electromagnetics, Vol. 12, 287-341, Jul.-Dec. 1992.

31. Volakis, J. L., A. Chatterjee, and L. C. Kempel, "Review of the finite-element method for 3-dimensional electromagnetic scattering," Journal of the Optical Society of America A --- Optics Image Science and Vision, Vol. 11, 1422-1433, Apr. 1994.
doi:10.1364/JOSAA.11.001422

32. Kottmann, J. P. and O. J. F. Martin, "Accurate solution of the volume integral equation for high-permittivity scatterers," IEEE Transactions on Antennas and Propagation, Vol. 48, 1719-1726, Nov. 2000.

33. Yilmaz, A. E., B. Shanker, J. M. Jin, and E. Michielssen, "Efficient solution of time domain volume integral equations using the adaptive integral method," Proceedings of the USNC/CNC/URSI Meeting, 711, Jun. 2003.

34. Harrington, R. F., Field Computations by Moment Methods, Macmillan, New York, 1968.

35. Volakis, J. L. and K. Barkeshli, "Applications of the conjugate radient FFT method to radiation and scattering," Progress In Electromagnetics Research, Vol. 05, 159-239, 1991.

36. Nerukh, A. G., "Evolutionary approach in transient electro-dynamics problems," Radio Science, Vol. 30, 481-491, May-Jun. 1995.

37. Nerukh, A. G., I. V. Scherbatko, and O. N. Rybin, "The direct numerical calculation of an integral volterra equation for an electromagnetic signal in a time-varying dissipative medium," Journal of Electromagnetic Waves and Applications, Vol. 12, 163-176, 1998.
doi:10.1163/156939398X00755

38. Nerukh, A. G., I. V. Scherbatko, and M. Marciniak, Electromagnetics of Modulated Media with Applications to Photonics, Nat. Inst. Telecommun., Warsaw, Poland, 2001.

39. Fedotov, F. V., A. G. Nerukh, T. A. Benson, and P. Sewell, "Investigation of electromagnetic field in a layer with time-varying medium by volterra intergral equation method," Journal of Lightwave Technology, Vol. 21, 305-314, Jan. 2003.
doi:10.1109/JLT.2003.808652

40. Al-Jarro, A., P. Sewell, T. M. Benson, and A. Nerukh, "Effective and flexible analysis for propagation in time varying waveguides," Optical and Quantum Electronics, Vol. 36, 133-144, Jan.-Feb. 2004.

41. Benson, T. M., A. Al-Jarro, P. Sewell, V. Janyani, J. D. Paul, and A. Vukovic, "Simulation of nonlinear integrated photonics devices: A comparison of tlm and numerical time domain integral equation approaches," Ultra-wideband, Short-pulse Electromagnetics, Vol. 7, 80-88, 2007.

42. Al-Jarro, A., P. Sewell, T. M. Benson, and A. Vukovic, "A volterra integral equation algorithm on triangulated space time meshes," Proceedings of the 2007 Workshop on Computational Electromagnetics in Time-domain, 1-4, Perugia, 2007.
doi:10.1109/CEMTD.2007.4373541

43. Al-Jarro, A., P. Sewell, T. M. Benson, and A. Vukovic, "A volterra time-domain integral equation algorithm on unstructured meshes: 3D model," Proceedings of the 25th International Review of Progress in Applied Computational, 792-796, Monterey, Mar. 2009.

44. Al-Jarro, A., P. Sewell, T. M. Benson, and A. Vukovic, "Stabilizing 3D volterra time domain integral equation algorithms," International Symposium on Antennas and Propagation, Bangkok, Oct. 2009.

45. Sarto, M. S. and A. Scarlatti, "Suppression of late-time instabilities in 3D-FDTD analyses by combining digital filtering techniques and efficient boundary conditions," IEEE Transactions on Magnetics, Vol. 37, 3273-3276, Sep. 2001.
doi:10.1109/20.952593

46. Waldvogel, J., "Newtonian potential of homogeneous polyhedra," Journal of Applied Mathematics and Physics, Vol. 30, 388-398, Mar. 1979.
doi:10.1007/BF01601950

47. Waldvogel, J., "Newtonian potential of homogeneous cube," Journal of Applied Mathematics and Physics, Vol. 27, 867-871, Nov. 1976.

48. Paul, J., C. Christopoulos, and D. W. P. Thomas, "Generalized material models in TLM --- Part I: Materials with frequency-dependent properties," IEEE Transactions on Antennas and Propagation, Vol. 47, 1528-1534, Oct. 1999.

49. Mie, G., "A contribution to the optics of turbid media: Especially colloidal metal solutions," Annals of Physics, Vol. 25, 377-445, 1908.

50. Oppenheim, A. V. and R. W. Schafer, Discrete-time Signal Processing, Englewood Cliffs, Prentice Hall, New Jersey, 1989.