Vol. 19
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-11-28
A Miniaturized UWB BPF Based on Novel Scrlh Transmission Line Structure
By
Progress In Electromagnetics Research Letters, Vol. 19, 67-73, 2010
Abstract
A miniaturized ultra-wideband (UWB) bandpass filter (BPF) with U-slot etched around the metallic via in the ground is proposed based on a simplified composite right/left-handed transmission line (SCRLH TL) structure. The U-slot etched in the ground makes it feasible to reduce the overall size. A demonstration of FCC standard UWB bandpass filter (BPF) is designed, fabricated and measured. Very good agreement is shown between measurement and simulation.
Citation
Ji-Kang Wang, Yong-Jiu Zhao, Li Qiang, and Quan Sun, "A Miniaturized UWB BPF Based on Novel Scrlh Transmission Line Structure," Progress In Electromagnetics Research Letters, Vol. 19, 67-73, 2010.
doi:10.2528/PIERL10091802
References

1. Sun, S. and L. Zhu, "Capacitive-ended interdigital coupled lines for UWB bandpass filters with improved out-of-band performances," IEEE Microwave and Optical Technology Letters, Vol. 16, No. 8, August 2006.

2. Qing, L., Y. J. Zhao, Q. Sun, W. Zhao, and B. Liu, "A compact UWB HMSIW bandpass filter based on complementary split-ring resonators," Progress In Electromagnetics Research C, Vol. 11, 237-243, 2009.
doi:10.2528/PIERC09112102

3. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 2702-2712, 2002.
doi:10.1109/TMTT.2002.805197

4. Sanada, A., C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microwave and Optical Technology Letters, Vol. 14, No. 2, February 2004.

5. Caloz, C., A. Sanada, and T. Itoh, "A novel composite right/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 980-992, 2004.
doi:10.1109/TMTT.2004.823579

6. Bonache, J., G. Siso, M. Gil, A. Iniesta, J. G. Rincon, and F. Martin, "Application of composite right/left handed (CRLH) transmission lines based on compementary split ring resonantors (CSRRs) to the design of dual-band microwave components," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 8, August 2008.
doi:10.1109/LMWC.2008.2001011

7. Lin, X. Q., R. P. Liu, and X. M. Yang, "Arbitrary dual-band components using simplified structures of conventional CRLH TLs," IEEE Transaction on Microwave Theory and Techniques, Vol. 54, No. 7, 2902-2909, July 2006.

8. Lai, A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, March 2007.
doi:10.1109/TAP.2007.891845

9. Caloz, C. and T. Itoh, Electromagnetic Metamaterials Transmission Line Theory and Microwave Applications, Wiley Inter Science, 2006.

10. Ryu, Y. H., J. H. Park, J. H. Lee, J. Y. Kim, and H. S. Tae, "DGS dual composite right/left handed transmission line," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 7, 434-436, 2008.
doi:10.1109/LMWC.2008.924909