Vol. 19
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-12-08
Inverse Joukowski Mapping
By
Progress In Electromagnetics Research Letters, Vol. 19, 113-125, 2010
Abstract
This is paper discusses the inverse Joukowski mapping, w=z+√{z2-c2} (c>0), which can be classified into active and passive inverse transformation. By using the active inverse Joukowski mapping, the generalized image problems that the line charge ρl is located outside the elliptical conducting cylinder, or the finite conducting plate can be solved. By using the passive logarithmic inverse Joukowski mapping, the capacitance C of a finite conducting plate placed vertically above the infinite conducting plate can be solved. Thus the conformal mapping method can replace the image method and electrical axis method become the uniform method to solve the electrostatic problems.
Citation
Chang-Hong Liang, Xin-Wen Wang, and Xi Chen, "Inverse Joukowski Mapping," Progress In Electromagnetics Research Letters, Vol. 19, 113-125, 2010.
doi:10.2528/PIERL10091305
References

1. Liang, C. H., L. Li, and H. Q. Zhi, "Asymptotic closed form for the capacitance of an arbitrarily shaped conductingplate," IEE Proc. --- Microw. Antennas, Vol. 151, No. 3, 217-220, Jun. 2004.
doi:10.1049/ip-map:20040273

2. Liang, C. H., H. B. Yuan, and K. B. Tan, "Method of largest extended circle for the capacitance of arbitrarily shaped conducting plates," Progress In Electromagnetics Research Letters, Vol. 1, 51-60, 2008.
doi:10.2528/PIERL07112101

3. Cheng, D. K., Electromagnetic Fields & Waves, Shanghai Jiaotong University Press, 1985.

4. Bi, D. X., Theory of Electromagnetic Fields, Military College of Telecommunication Engineering, 1964.

5. Xie, C. F. and K. Q. Rao, Electromagnetic Fields & Magnetic Waves, China Higher Education Press, 1979.

6. Lin, W. G., Theory of Electromagnetic Fields, The People's Posts and Telecommunications Press, 1984.

7. Liang, C. H. and X. Chen, "Plane mirror and active conformal mapping," Journal of EEE, Vol. 32, 1-5, Apr. 2010.