Vol. 110
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-11-06
On the Calibration of a Multistatic Scattering Matrix Measured by a Fixed Circular Array of Antennas
By
Progress In Electromagnetics Research, Vol. 110, 1-21, 2010
Abstract
The calibration of the multistatic scattering matrix plays an important part in the construction of a quantitative microwave imaging system. For scattering measurement applications, the calibration must be performed on the amplitude and on the phase of the fields of interest. When the antennas are not completely identical, as for example with a multiplexed antennas array, a specific calibration procedure must be constructed. In the present work, we explain how a complex calibration matrix can be defined which takes advantage of the geometrical organization of the antennas. Indeed, for arrays of antennas positioned on a circle, the inherent symmetries of the configuration can be fully exploited by means of an adequate reorganization of the multistatic scattering matrix. In addition, the reorganization permits to detect antenna pairs which are not properly functioning and to estimate the signal-to-noise ratio. Experimental results obtained within a cylindrical cavity enclosed by a metallic casing are provided to assess the performance of the proposed calibration procedure.This calibration protocol, which is described here in detail, has already been applied to provide quantitative images of dielectric targets [1, 2].
Citation
Amelie Litman, Jean-Michel Geffrin, and Herve Tortel, "On the Calibration of a Multistatic Scattering Matrix Measured by a Fixed Circular Array of Antennas," Progress In Electromagnetics Research, Vol. 110, 1-21, 2010.
doi:10.2528/PIER10090302
References

1. Lencrerot, R., A. Litman, H. Tortel, and J.-M. Geffrin, "Imposing Zernike representation for two-dimensional targets imaging," Inverse Problems, Vol. 25, No. 3, 035012, 2009.
doi:10.1088/0266-5611/25/3/035012

2. Litman, A., R. Lencrerot, and J.-M. Geffrin, "Combining spatial support information and shape-based method for tomographic imaging inside a microwave cylindrical scanner," Inverse Problems Sci. Eng., Vol. 18, No. 1, 19-34, 2010.
doi:10.1080/17415970903233580

3. McGahan, R. and R. Kleinman, "Third annual special session on image reconstruction using real data," IEEE Antennas Propagat. Mag., Vol. 41, No. 1, 34-36, 1999.
doi:10.1109/MAP.1999.755022

4. Geffrin, J.-M., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental setup and measurement precision," Inverse Problems, Vol. 21, No. 6, S117-S130, 2005.
doi:10.1088/0266-5611/21/6/S09

5. Solimene, R., A. Brancaccio, J. Romano, and R. Pierri, "Localizing thin metallic cylinders by a 2.5D linear distributional approach: Experimental results," IEEE Trans. Antennas Propagat., Vol. 56, No. 8, 2630-2637, 2008.
doi:10.1109/TAP.2008.927506

6. Yu, C., M. Yuan, J. Stand, E. Bressiour, R. George, G. Ybarra, W. Joines, and Q. Liu, "Active microwave imaging II: 3D systeme prototype and image reconstruction from experimental data," IEEE Trans. Microwave Theory and Tech., Vol. 56, No. 4, 991-1000, 2008.
doi:10.1109/TMTT.2008.919661

7. Duchêne, B., A. Joisel, and M. Lambert, "Nonlinear inversions of immersed objects from laboratory-controlled data," Inverse Problems, Vol. 20, No. 6, S81-S98, 2004.
doi:10.1088/0266-5611/20/6/S06

8. Eyraud, C., J.-M. Geffrin, P. Lewyllie, A. Franchois, and A. Dubois, "Target localization and measured scattered field preprocessing using spectral bandwidth minimization for shallowly buried target problems," Microw. Opt. Tech. Lett., Vol. 52, No. 1, 147-151, 2010.
doi:10.1002/mop.24855

9. Yu, C., M. Yuan, J. Stand, R. George, G. Ybarra, W. Joines, and Q. Liu, "Microwave imaging in a layered media: 3D image reconstruction from experimental data," IEEE Trans. Antennas Propagat., Vol. 58, No. 2, 440-448, 2010.
doi:10.1109/TAP.2009.2037770

10. Broquetas, A., J. Romeu, J. Rius, A. Elias-Fuste, A. Cardama, and L. Jofre, "Cylindrical geometry: A further step in active microwave tomography," IEEE Trans. Microwave Theory and Tech., Vol. 39, No. 5, 836-844, 1991.
doi:10.1109/22.79111

11. Meaney, P., M. Fanning, D. Li, S. Poplack, and K. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. Microwave Theory and Tech., Vol. 48, No. 11, 1841-1853, 2000.
doi:10.1109/22.883861

12. Geffrin, J.-M., "Imagerie microonde: Etude d'un scanner a 434MHz pour applications biomedicales,", Ph.D. Thesis, University of Paris XI, Orsay, France, 1995.

13. Lencrerot, R., A. Litman, H. Tortel, and J.-M. Geffrin, "Measurement strategies for a confined microwave circular scanner," Inverse Problems Sci. Eng., Vol. 17, No. 6, 787-802, 2009.
doi:10.1080/17415970802577012

14. Mojabi, P. and J. LoVetri, "Eigenfunction contrast source inversion for circular metallic enclosures," Inverse Problems, Vol. 26, No. 2, 025010, 2010.
doi:10.1088/0266-5611/26/2/025010

15. Padhi, S., A. Fhager, M. Persson, and J. Howard, "Measured antenna response of a proposed microwave tomography system using an efficient 3-D FFT model," IEEE Antennas and Wireless Propag. Lett., Vol. 7, 689-692, 2008.
doi:10.1109/LAWP.2008.2009888

16. Azaro, R., S. Caorsi, and M. Pastorino, "A 3-GHz microwave imaging system based on a modulated scattering technique and a modified Born approximation," Int. J. Imaging Systems Tech., Vol. 9, 395-403, 1998.
doi:10.1002/(SICI)1098-1098(1998)9:5<395::AID-IMA10>3.0.CO;2-U

17. Eyraud, C., J.-M. Geffrin, P. Sabouroux, P. C. Chaumet, H. Tortel, H. Giovannini, and A. Litman, "Validation of a 3D bistatic microwave scattering measurement setup," Radio Sci., Vol. 43, No. 4, RS4018, 2008.
doi:10.1029/2008RS003836

18. Geffrin, J.-M., C. Eyraud, A. Litman, and P. Sabouroux, "Optimization of a bistatic microwave scattering measurement setup: From high to low scattering targets," Radio Sci., Vol. 44, RS2007, 2009.
doi:10.1029/2008RS003837

19. Geffrin, J.-M. and P. Sabouroux, "Continuing with the fresnel database: Experimental setup and improvements in 3D scattering measurements," Inverse Problems, Vol. 25, No. 2, 024001, 2009.
doi:10.1088/0266-5611/25/2/024001

20. Kahny, D., K. Schmitt, and W. Wiesbeck, "Calibration of bistatic polarimetric radar systems," IEEE Trans. Geosci. Remote Sens., Vol. 30, No. 5, 847-852, 1992.
doi:10.1109/36.175318

21. Whitt, M., F. Ulaby, P. Polatin, and V. Liepa, "A general polarimetric radar calibration technique," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 62-67, 1991.
doi:10.1109/8.64436

22. Bradley, J., P. Collins, J. Fortuny-Guash, M. Hastriter, G. Nesti, A. Terzuoli, and K. Wilson, "An investigation of bistatic calibration techniques," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 10, 2185-2191, 2005.
doi:10.1109/TGRS.2005.855130

23. Eyraud, C., J.-M. Geffrin, A. Litman, P. Sabouroux, and H. Giovannini, "Drift correction for scattering measurements," Appl. Phys. Lett., Vol. 89, No. 24, 244104, 2006.
doi:10.1063/1.2404978

24. Gilmore, C., P. Mojabi, A. Zakaria, M. Ostadrahimi, C. Kaye, S. Noghanian, L. Shafai, S. Pistorius, and J. LoVetri, "A wideband microwave tomography system with a novel frequency selection procedure," IEEE Trans. Biomed. Eng., Vol. 57, 894-904, 2010.
doi:10.1109/TBME.2009.2036372

25. Crocco, L. and A. Litman, "On embedded microwave imaging systems: Retrievable information and design guidelines," Inverse Problems, Vol. 25, No. 6, 065001, 2009.
doi:10.1088/0266-5611/25/6/065001

26. Paulides, M., J. Bakker, N. Chavannes, and G. van Rhoon, "A patch antenna design for application in a phased-array head and neck hyperthermia applicator," IEEE Trans. Biomed. Eng., Vol. 54, No. 11, 2057-2063, 2007.
doi:10.1109/TBME.2007.895111

27. Meaney, P., S. Pendergrass, M. Fanning, D. Li, and K. Paulsen, "Importance of using a reduced contrast coupling medium in 2D microwave breast imaging," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 333-355, 2003.
doi:10.1163/156939303322235851

28. Franchois, A., "Contribution à la tomographie microonde: Algorithmes de reconstruction quantitative et vérifications experimentales,", Ph.D. Thesis, University of Paris XI, Orsay, France, 1993.

29. Franchois, A. and A. G. Tijhuis, "A quasi-Newton reconstruction algorithm for a complex microwave imaging scanner environment," Radio Sci., Vol. 38, No. 2, 8011, 2003.
doi:10.1029/2001RS002590

30. Van den Berg, P. M. and J. T. Fokkema, "Removal of undesired wavefields related to the casing of a microwave scanner," IEEE Trans. Microwave Theory and Tech., Vol. 51, No. 1, 187-192, 2003.
doi:10.1109/TMTT.2002.806900

31. Lencrerot, R., "Outils de modélisation et d'imagerie pour un scanner micro-onde: Application au contrôle de la teneur en eau d'une colonne de sol,", Ph.D. Thesis, Univ. P. Cezanne, Marseille, France, 2008.

32. Bucci, O. M. and T. Isernia, "Electromagnetic inverse scattering: Retrievable information and measurement strategies," Radio Sci., Vol. 32, No. 6, 2123-2138, 1997.
doi:10.1029/97RS01826

33. Fang, Q., P. Meaney, S. Geimer, A. Streltsov, and K. Paulsen, "Microwave imaging reconstruction from 3D fields coupled to 2D parameter estimation," IEEE Trans. Medical Imaging, Vol. 23, No. 4, 475-484, 2004.
doi:10.1109/TMI.2004.824152

34. Eyraud, C., A. Litman, A. Hérique, and W. Kofman, "Microwave imaging from experimental data within a Bayesian framework with realistic random noise," Inverse Problems, Vol. 25, No. 2, 024005, 2009.
doi:10.1088/0266-5611/25/2/024005