1. Lencrerot, R., A. Litman, H. Tortel, and J.-M. Geffrin, "Imposing Zernike representation for two-dimensional targets imaging," Inverse Problems, Vol. 25, No. 3, 035012, 2009.
doi:10.1088/0266-5611/25/3/035012
2. Litman, A., R. Lencrerot, and J.-M. Geffrin, "Combining spatial support information and shape-based method for tomographic imaging inside a microwave cylindrical scanner," Inverse Problems Sci. Eng., Vol. 18, No. 1, 19-34, 2010.
doi:10.1080/17415970903233580
3. McGahan, R. and R. Kleinman, "Third annual special session on image reconstruction using real data," IEEE Antennas Propagat. Mag., Vol. 41, No. 1, 34-36, 1999.
doi:10.1109/MAP.1999.755022
4. Geffrin, J.-M., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental setup and measurement precision," Inverse Problems, Vol. 21, No. 6, S117-S130, 2005.
doi:10.1088/0266-5611/21/6/S09
5. Solimene, R., A. Brancaccio, J. Romano, and R. Pierri, "Localizing thin metallic cylinders by a 2.5D linear distributional approach: Experimental results," IEEE Trans. Antennas Propagat., Vol. 56, No. 8, 2630-2637, 2008.
doi:10.1109/TAP.2008.927506
6. Yu, C., M. Yuan, J. Stand, E. Bressiour, R. George, G. Ybarra, W. Joines, and Q. Liu, "Active microwave imaging II: 3D systeme prototype and image reconstruction from experimental data," IEEE Trans. Microwave Theory and Tech., Vol. 56, No. 4, 991-1000, 2008.
doi:10.1109/TMTT.2008.919661
7. Duchêne, B., A. Joisel, and M. Lambert, "Nonlinear inversions of immersed objects from laboratory-controlled data," Inverse Problems, Vol. 20, No. 6, S81-S98, 2004.
doi:10.1088/0266-5611/20/6/S06
8. Eyraud, C., J.-M. Geffrin, P. Lewyllie, A. Franchois, and A. Dubois, "Target localization and measured scattered field preprocessing using spectral bandwidth minimization for shallowly buried target problems," Microw. Opt. Tech. Lett., Vol. 52, No. 1, 147-151, 2010.
doi:10.1002/mop.24855
9. Yu, C., M. Yuan, J. Stand, R. George, G. Ybarra, W. Joines, and Q. Liu, "Microwave imaging in a layered media: 3D image reconstruction from experimental data," IEEE Trans. Antennas Propagat., Vol. 58, No. 2, 440-448, 2010.
doi:10.1109/TAP.2009.2037770
10. Broquetas, A., J. Romeu, J. Rius, A. Elias-Fuste, A. Cardama, and L. Jofre, "Cylindrical geometry: A further step in active microwave tomography," IEEE Trans. Microwave Theory and Tech., Vol. 39, No. 5, 836-844, 1991.
doi:10.1109/22.79111
11. Meaney, P., M. Fanning, D. Li, S. Poplack, and K. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. Microwave Theory and Tech., Vol. 48, No. 11, 1841-1853, 2000.
doi:10.1109/22.883861
12. Geffrin, J.-M., "Imagerie microonde: Etude d'un scanner a 434MHz pour applications biomedicales,", Ph.D. Thesis, University of Paris XI, Orsay, France, 1995.
13. Lencrerot, R., A. Litman, H. Tortel, and J.-M. Geffrin, "Measurement strategies for a confined microwave circular scanner," Inverse Problems Sci. Eng., Vol. 17, No. 6, 787-802, 2009.
doi:10.1080/17415970802577012
14. Mojabi, P. and J. LoVetri, "Eigenfunction contrast source inversion for circular metallic enclosures," Inverse Problems, Vol. 26, No. 2, 025010, 2010.
doi:10.1088/0266-5611/26/2/025010
15. Padhi, S., A. Fhager, M. Persson, and J. Howard, "Measured antenna response of a proposed microwave tomography system using an efficient 3-D FFT model," IEEE Antennas and Wireless Propag. Lett., Vol. 7, 689-692, 2008.
doi:10.1109/LAWP.2008.2009888
16. Azaro, R., S. Caorsi, and M. Pastorino, "A 3-GHz microwave imaging system based on a modulated scattering technique and a modified Born approximation," Int. J. Imaging Systems Tech., Vol. 9, 395-403, 1998.
doi:10.1002/(SICI)1098-1098(1998)9:5<395::AID-IMA10>3.0.CO;2-U
17. Eyraud, C., J.-M. Geffrin, P. Sabouroux, P. C. Chaumet, H. Tortel, H. Giovannini, and A. Litman, "Validation of a 3D bistatic microwave scattering measurement setup," Radio Sci., Vol. 43, No. 4, RS4018, 2008.
doi:10.1029/2008RS003836
18. Geffrin, J.-M., C. Eyraud, A. Litman, and P. Sabouroux, "Optimization of a bistatic microwave scattering measurement setup: From high to low scattering targets," Radio Sci., Vol. 44, RS2007, 2009.
doi:10.1029/2008RS003837
19. Geffrin, J.-M. and P. Sabouroux, "Continuing with the fresnel database: Experimental setup and improvements in 3D scattering measurements," Inverse Problems, Vol. 25, No. 2, 024001, 2009.
doi:10.1088/0266-5611/25/2/024001
20. Kahny, D., K. Schmitt, and W. Wiesbeck, "Calibration of bistatic polarimetric radar systems," IEEE Trans. Geosci. Remote Sens., Vol. 30, No. 5, 847-852, 1992.
doi:10.1109/36.175318
21. Whitt, M., F. Ulaby, P. Polatin, and V. Liepa, "A general polarimetric radar calibration technique," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 62-67, 1991.
doi:10.1109/8.64436
22. Bradley, J., P. Collins, J. Fortuny-Guash, M. Hastriter, G. Nesti, A. Terzuoli, and K. Wilson, "An investigation of bistatic calibration techniques," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 10, 2185-2191, 2005.
doi:10.1109/TGRS.2005.855130
23. Eyraud, C., J.-M. Geffrin, A. Litman, P. Sabouroux, and H. Giovannini, "Drift correction for scattering measurements," Appl. Phys. Lett., Vol. 89, No. 24, 244104, 2006.
doi:10.1063/1.2404978
24. Gilmore, C., P. Mojabi, A. Zakaria, M. Ostadrahimi, C. Kaye, S. Noghanian, L. Shafai, S. Pistorius, and J. LoVetri, "A wideband microwave tomography system with a novel frequency selection procedure," IEEE Trans. Biomed. Eng., Vol. 57, 894-904, 2010.
doi:10.1109/TBME.2009.2036372
25. Crocco, L. and A. Litman, "On embedded microwave imaging systems: Retrievable information and design guidelines," Inverse Problems, Vol. 25, No. 6, 065001, 2009.
doi:10.1088/0266-5611/25/6/065001
26. Paulides, M., J. Bakker, N. Chavannes, and G. van Rhoon, "A patch antenna design for application in a phased-array head and neck hyperthermia applicator," IEEE Trans. Biomed. Eng., Vol. 54, No. 11, 2057-2063, 2007.
doi:10.1109/TBME.2007.895111
27. Meaney, P., S. Pendergrass, M. Fanning, D. Li, and K. Paulsen, "Importance of using a reduced contrast coupling medium in 2D microwave breast imaging," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 333-355, 2003.
doi:10.1163/156939303322235851
28. Franchois, A., "Contribution à la tomographie microonde: Algorithmes de reconstruction quantitative et vérifications experimentales,", Ph.D. Thesis, University of Paris XI, Orsay, France, 1993.
29. Franchois, A. and A. G. Tijhuis, "A quasi-Newton reconstruction algorithm for a complex microwave imaging scanner environment," Radio Sci., Vol. 38, No. 2, 8011, 2003.
doi:10.1029/2001RS002590
30. Van den Berg, P. M. and J. T. Fokkema, "Removal of undesired wavefields related to the casing of a microwave scanner," IEEE Trans. Microwave Theory and Tech., Vol. 51, No. 1, 187-192, 2003.
doi:10.1109/TMTT.2002.806900
31. Lencrerot, R., "Outils de modélisation et d'imagerie pour un scanner micro-onde: Application au contrôle de la teneur en eau d'une colonne de sol,", Ph.D. Thesis, Univ. P. Cezanne, Marseille, France, 2008.
32. Bucci, O. M. and T. Isernia, "Electromagnetic inverse scattering: Retrievable information and measurement strategies," Radio Sci., Vol. 32, No. 6, 2123-2138, 1997.
doi:10.1029/97RS01826
33. Fang, Q., P. Meaney, S. Geimer, A. Streltsov, and K. Paulsen, "Microwave imaging reconstruction from 3D fields coupled to 2D parameter estimation," IEEE Trans. Medical Imaging, Vol. 23, No. 4, 475-484, 2004.
doi:10.1109/TMI.2004.824152
34. Eyraud, C., A. Litman, A. Hérique, and W. Kofman, "Microwave imaging from experimental data within a Bayesian framework with realistic random noise," Inverse Problems, Vol. 25, No. 2, 024005, 2009.
doi:10.1088/0266-5611/25/2/024005