Vol. 17
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-09-24
A Miniaturized Branch-Line Coupler with Wideband Harmonics Suppression
By
Progress In Electromagnetics Research Letters, Vol. 17, 181-189, 2010
Abstract
This paper presents a miniaturized branch-line coupler with suppression of wideband harmonics based on a unit of transmission-line section with triple-stub. This fundamental unit produces three transmission zeros and exhibits wide stopband response due to the triple stubs. It is used to replace a quarter-wavelength line in conventional branch-line coupler, leading to size reduction and wideband harmonics suppression. The closed-form equations are given for the coupler design. As an example, a branch-line coupler operating at 1.0 GHz is designed, fabricated and measured. Measurements agree well with simulations, and show that the proposed branch-line coupler occupies 56% size of a conventional one and achieves wideband harmonics suppression (better than 17 dB) from 1.8 GHz to 6.4 GHz. The 2nd, 3rd, 4th, 5th, and 6th harmonics are suppressed better than 34 dB, 19 dB, 30 dB, 17 dB, and 32 dB, respectively. With the theoretical analyses and practical results, it is shown that the proposed one has the advantages of simple structure, convenient analysis and wideband harmonics suppression.
Citation
Bo Li, Xidong Wu, and Wen Wu, "A Miniaturized Branch-Line Coupler with Wideband Harmonics Suppression," Progress In Electromagnetics Research Letters, Vol. 17, 181-189, 2010.
doi:10.2528/PIERL10082602
References

1. Pozar, D. M., Microwave Engineering, 3rd Ed., 333-337, Wiley, 2005.

2. Ramesh, M., D. Packiaraj, and A. T. Kalghatgi, "A compact branch line coupler using defected ground structure," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2--3, 267-276, 2008.
doi:10.1163/156939308784160659

3. Zhang, J. and X.-W. Sun, "Harmonic suppression of branch-line and rat-race coupler using complementary split ring resonators (CSRR) cell," Progress In Electromagnetics Research Letters, Vol. 2, 73-79, 2008.
doi:10.2528/PIERL07122702

4. Gu, J. and X. Sun, "Miniaturization and harmonic suppression of branch-line and rat-race hybrid coupler using compensating spiral compact micostrip resonant cell," IEEE MTT-S Int. Microwave Symp. Dig., 1211-1214, 2005.

5. Wang, J., B.-Z. Wang, Y.-X. Guo, L.C. Ong, and S. Xiao, "A compact slow-wave microstrip branch-line coupler with high performance," IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 7, 501-503, 2007.
doi:10.1109/LMWC.2007.899307

6. Wang, C.-W., T.-G. Ma, and C.-F. Yang, "A new planar artificial transmission line and its application to a miniaturized butler matrix," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 12, 2792-2801, 2007.
doi:10.1109/TMTT.2007.909474

7. Wang, J., J. Ni, S. Zhao, and Y.-X. Guo, "Compact microstrip ring branch-line coupler with harmonic suppression," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2119-2126, 2009.
doi:10.1163/156939309790109216

8. Mondal, P. and A. Chakrabarty, "Design of miniaturized branch-line and rat-race hybrid couplers with harmonics suppression," IET Microw. Antennas Propag., Vol. 3, No. 1, 109-116, 2009.
doi:10.1049/iet-map:20070202

9. Fan, F., Z.-H. Yan, and J.-B. Jiang, "Design of a novel compact power divider with harmonic suppression," Progress In Electromagnetics Research Letters, Vol. 5, 151-157, 2008.
doi:10.2528/PIERL08111808

10. Tu, W.-H. and K. Chang, "Compact second harmonic-suppressed bandstop and bandpass filters using open stubs," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2497-2502, 2006.
doi:10.1109/TMTT.2006.875802

11. Velidi, V. K., A. B. Guntupalli, and S. Sanyal, "Sharp-rejection ultra-wide bandstop filters," IEEE Microw. Wirel. Compon. Lett., Vol. 19, No. 8, 503-505, 2009.
doi:10.1109/LMWC.2009.2024834

12. Malherbe, J. A. G. and C. A. Reid, "Double resonant stub bandstop filter with pseudo-elliptic response," Electron. Lett., Vol. 46, No. 7, 508-509, 2010.
doi:10.1049/el.2010.0100