Vol. 19
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-11-20
Substrate Integraged Waveguide Wilkinson Power Divider with Improved Isolation Performance
By
Progress In Electromagnetics Research Letters, Vol. 19, 41-48, 2010
Abstract
This work proposes a substrate integrated waveguide (SIW) power divider employing the Wilkinson configuration for improving the isolation performance of conventional T-junction SIW power dividers. Measurement results at 15 GHz show that the isolation (S23, S32) between output ports is about 17 dB and the output return losses (S22, S33) are about 14.5 dB, respectively. The Wilkinson-type performance has been greatly improved from those (7.0 dB~8.0 dB) of conventional T-junction SIW power dividers. The measured input return loss (23 dB) and average insertion loss (3.9 dB) are also improved from those of conventional ones. The proposed Wilkinson SIW divider will play an important role in high performance SIW circuits involving power divisions.
Citation
Kyeongmin Kim, Jindo Byun, and Hai-Young Lee, "Substrate Integraged Waveguide Wilkinson Power Divider with Improved Isolation Performance," Progress In Electromagnetics Research Letters, Vol. 19, 41-48, 2010.
doi:10.2528/PIERL10082407
References

1. Wu, K., D. Deslandes, and Y. Cassivi, "The substrate integrated circuits --- A new concept for high-frequency electronics and opto-electronics," Proc. 6th Int. Conf. Telecommun. Modern Sat., Cable Broadcasting Service (TELSIKS), PIII-PX, 2003.

2. Liu, B., W. Hong, Z. C. Hao, and K. Wu, "Substrate integrated waveguide 180-degree Narrow wall Directional Coupler," Asia-Pacific Conference Proceedings, 3, 2005.

3. Hao, Z. C., W. Hong, and K. Wu, "Multi-way broad-band substrate integrated waveguide (SIW) power divider," Proc. IEEE Int. Symp. Antennas Propagation, Vol. 1A, 639-642, Washington, DC, Jul. 3-8, 2005.

4. Germain, S., D. Deslandes, and K.Wu, "Development of substrate integrated waveguide power dividers," Proc. IEEE Canadian Conf. Elect. Comput. Eng., Vol. 3, 1921-1924, 2003.

5. Smith, N. A. and R. Abhari, "Compact substrate integrated waveguide wilkinson power dividers," IEEE International Symposium on Antennas and Propagation, 1-4, Charleston, SC, 2009.

6. Wilkinson, E., "An N-way hybrid power divider," IRE Trans. Microw. Theory Tech., Vol. 8, 116-118, Jan. 1960.
doi:10.1109/TMTT.1960.1124668

7. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 66-73, Jan. 2005.
doi:10.1109/TMTT.2004.839303

8. Hong, W., B. Liu, Y. Q. Wang, Q. H. Lai, and K. Wu, "Half mode substrate integrated waveguide: A new guided wave structure for microwave and millimeter wave application," Proc. Joint 31st Int. Conf. Infr. Millim. Waves and 14th Int Conf. Terahertz Electron., 219, Shanghai, China, Sep. 18-22, 2006.

9. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microw. Wireless Compon. Lett., Vol. 11, No. 2, 68-70, Feb. 2001.
doi:10.1109/7260.914305

10. Lai, Q. H., C. Fumeaux, W. Hong, and R. Vahldieck, "Characterization of the propagation properties of the half-mode substrate integrated waveguide," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 8, 1996-2004, Aug. 2009.
doi:10.1109/TMTT.2009.2025429

11. Zhang, Z. Y. and K. Wu, "Broadband half-mode substrate integrated waveguide (HMSIW) wilkinson power divider," IEEE MTT-S International Microwave Symposium Digest, 879-882, Jun. 2008.