Vol. 109
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-11-06
A High Accuracy Conformal Method for Evaluating the Discontinuous Fourier Transform
By
Progress In Electromagnetics Research, Vol. 109, 425-440, 2010
Abstract
A highly accurate, fast algorithm is proposed to evaluate the finite Fourier transform of both continuous and discontinues functions. As the discretization is conformal to the function discontinuities, this method is called the conformal Fourier transform (CFT) method. It is applied to computational electromagnetics to calculate the Fourier transform of induced electric current densities in a volume integral equation. The spectral discrimination in the CFT method can be arbitrary and the spectral range can be as large as needed. As no discretization for the Fourier exponential kernel is needed, the CFT method is not restricted by the Nyquist sampling theorem, thus avoiding the aliasing distortions that exist in other traditional methods. The accuracy of the CFT method is greatly improved since the method is based on high order interpolation and the closed-form Fourier transforms for polynomials partly reduce the error due to discretization. Assuming Ns and N are the numbers of sampling points in the spatial and frequency domain, respectively, the computational cost of the CFT method is O((M + 1)N log2L), where M is the interpolation order and L=(Ns−1)/M. Applications in spectral analysis of electromagnetic fields are demonstrated.
Citation
Chun-Hui Zhu, Qing Huo Liu, Yi Shen, and Lijun Liu, "A High Accuracy Conformal Method for Evaluating the Discontinuous Fourier Transform," Progress In Electromagnetics Research, Vol. 109, 425-440, 2010.
doi:10.2528/PIER10082007
References

1. Liu, Y. H., Z. P. Nie, and Q. H. Liu, "DIFFT: A fast and accurate algorithm for Fourier transform integrals of discontinuous functions," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 2, 716-718, 2008.
doi:10.1109/LMWC.2008.2005162

2. Fan, Z., R. S. Chen, H. Chen, and D. Z. Ding, "Weak form nonuniform fast Fourier transform method for solving volume integral equations," Progress In Electromagnetics Research, Vol. 89, 275-289, 2009.
doi:10.2528/PIER08121308

3. Semnani, A. and M. Kamyab, "Truncated cosine Fourier series expansion method for solving 2-D inverse scattering problems," Progress In Electromagnetics Research, Vol. 81, 73-97, 2008.
doi:10.2528/PIER07122404

4. Huang, Y., Y. Liu, Q. H. Liu, and J. Zhang, "Improved 3-D GPR detection by NUFFT combined with MPD method," Progress In Electromagnetics Research, Vol. 103, 185-199, 2010.
doi:10.2528/PIER10021005

5. Yang, S., Y. Chen, and Z. P. Nie, "Simulation of time modulated linear antenna arrays using the FDTD method," Progress In Electromagnetics Research, Vol. 98, 175-190, 2009.
doi:10.2528/PIER09092507

6. Najjar-Khatirkolaei, B. N. and A. R. Sebak, "Slot antenna on a conducting elliptic cylinder coated by nonconfocal chiral media," Progress In Electromagnetics Research, Vol. 93, 125-143, 2009.
doi:10.2528/PIER09033003

7. Liu, Y., Z. Liang, and Z. Yang, "Computation of electromagnetic dosimetry for human body using parallel FDTD algorithm combined with interpolation technique," Progress In Electromagnetics Research, Vol. 82, 95-107, 2008.
doi:10.2528/PIER08021603

8. Swillam, M. A., M. H. Bakr, and X. Li, "Full wave sensitivity analysis of guided wave structures using FDTD," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 16, 2135-2145, 2008.
doi:10.1163/156939308787522474

9. Lei, J. Z., C. H. Liang, W. Ding, and Y. Zhang, "EMC analysis of antennas mounted on electrically large platforms with parallel FDTD method," Progress In Electromagnetics Research, Vol. 84, 205-220, 2008.
doi:10.2528/PIER08071303

10. Froeyen, M. and L. Hellemans, "Improved algorithm for the discrete Fourier transform," Review of Scientific Instruments, Vol. 56, 2325, 1985.
doi:10.1063/1.1138528

11. Beaudoin, N. and S. S. Beauchemin, "A new numerical Fourier transform in d-dimensions," IEEE Transactions on Signal Processing, Vol. 51, No. 5, 1422-1430, 2003.
doi:10.1109/TSP.2003.810285

12. Sundararajan, D., The Discrete Fourier Transform: Theory, Algorithms and Applications, World Scientific Pub. Co. Inc., 2001.
doi:10.1142/9789812810298

13. Rabiner, L. R., R. W. Schafer, and C. M. Rader, "The chirp z-transform algorithm and its application," IEEE Trans. Audio Electroacoust, Vol. 17, 86-92, 1969.
doi:10.1109/TAU.1969.1162034

14. Simonen, P. and H. Olkkonen, "Fast method for computing the Fourier integral transform via Simpson's numerical integration," Journal of Biomedical Engineering, Vol. 7, No. 4, 337-340, 1985.
doi:10.1016/0141-5425(85)90067-6

15. Zeng, P., "High-accuracy formula for discrete calculation of fourier transforms," Applied Mathematics and Computation, Vol. 106, No. 2-3, 117-140, 1999.
doi:10.1016/S0096-3003(98)10080-2

16. Morelli, E. A., "High accuracy evaluation of the finite Fourier transform using sampled data," NASA TM, Vol. 110340, 1997.

17. Fan, G.-X. and Q. H. Liu, "Fast Fourier transform for discontinuous functions," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 461-465, 2004.
doi:10.1109/TAP.2004.823965

18. Liu, Y. H., Q. H. Liu, and Z. P. Nie, "A new efficient FDTD time-to-frequency-domain conversion algorithm," Progress In Electromagnetics Research, Vol. 92, 33-46, 2009.
doi:10.2528/PIER09030906

19. Higham, N. J., Accuracy and Stability of Numerical Algorithms, Society for Industrial Mathematics, 2002.
doi:10.1137/1.9780898718027

20. Sarkar, I. and A. T. Fam, "The interlaced chirp z transform," Signal Processing, Vol. 86, No. 9, 2221-2232, 2006.
doi:10.1016/j.sigpro.2005.10.004

21. Graillat, S., P. Langlois, and N. Louvet, "Compensated horner scheme,", Research Report, Vol. 4, 2005.

22. El-Mikkawy, M. E. A., "Explicit inverse of a generalized Vandermonde matrix," Applied Mathematics and Computation, Vol. 146, No. 2-3, 643-651, 2003.
doi:10.1016/S0096-3003(02)00609-4