Vol. 108
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-09-21
Fast Inhomogeneous Plane Wave Algorithm for Analysis of Composite Bodies of Revolution
By
Progress In Electromagnetics Research, Vol. 108, 235-247, 2010
Abstract
A fast inhomogeneous plane wave algorithm is developed for the electromagnetic scattering problem from the composite bodies of revolution (BOR). Poggio-Miller-Chang Harrington-Wu (PMCHW) approach is used for the homogeneous dielectric objects, while the electric field integral equation (EFIE) is used for the perfect electric conducting objects. The aggregation and disaggregation factors can be expressed analytically by using the Weyl identity. Compared with the traditional method of moments (MoM), both the memory requirement and CPU time, are reduced for large-scale composite BOR problems. Numerical results are given to demonstrate the validity and the efficiency of the proposed method.
Citation
Xi Rui, Jun Hu, and Qing Huo Liu, "Fast Inhomogeneous Plane Wave Algorithm for Analysis of Composite Bodies of Revolution," Progress In Electromagnetics Research, Vol. 108, 235-247, 2010.
doi:10.2528/PIER10081607
References

1. Andreasen, M. G., "Scattering from bodies of revolution," IEEE Trans. Antennas Propag., Vol. 13, No. 2, 303-310, Mar. 1965.
doi:10.1109/TAP.1965.1138406

2. Mautz, J. R. and R. F. Harrington, "Radiation and scattering from bodies of revolution," Appl. Sci. Res., Vol. 20, No. 1, 405-435, Jun. 1969.
doi:10.1007/BF00382412

3. Medgyesi-Mitschg, L. N. and J. M. Putnam, "Electromagnetic scattering from axially inhomogeneous bodies of revolution," IEEE Trans. Antennas Propag., Vol. 32, No. 8, 797-806, Aug. 1984.
doi:10.1109/TAP.1984.1143430

4. Huddleston, P. L., L. N. Medgyesi-Mitschg, and J. M. Putnam, "Combined field integral equation formulation for scattering by dielectrically coated conducting bodies," IEEE Trans. Antennas Propag., Vol. 34, No. 4, 510-520, Apr. 1986.
doi:10.1109/TAP.1986.1143846

5. Kishk, A. A. and L. Shafai, "Different formulations for numerical solution of single or multibodies of revolution with mixed boundary conditions," IEEE Trans. Antennas Progagat., Vol. 34, No. 5, 666-673, 1986.
doi:10.1109/TAP.1986.1143875

6. Kishk, A. A., G. E. Bridges, A. Sebak, and L. Shafai, "Integral equation solution of scattering from partially coated conduction bodies of revolution," IEEE Trans. Magnet., Vol. 27, 4283-4286, May 1991.
doi:10.1109/20.105048

7. Wong, M. F., M. Park, and V. Frouad Hanna, "Axisymmetric edge-based finite element formulation for bodies of revolution: Application to dielectric resonators," IEEE Microwave Symp. MTT-S, Vol. 1, 285-288, Orlando, FL, 1995.

8. Greenwood, A. D. and J. M. Jin, "A novel efficient algorithm for scattering from a complex BOR using mixed finite elements and cylindrical PML," IEEE Trans. Antennas Propag., Vol. 47, No. 4, 620-629, 1999.
doi:10.1109/8.768800

9. Rui, X., J. Hu, and Q. H. Liu, "Higher order finite element method for inhomogeneous axisymmetric resonators," Progress In Electromagnetics Research B, Vol. 21, 189-201, 2010.

10. Sukharevsky, O. I. and V. A. Vasilets, "Scattering of reflector antenna with conic dielectric radome," Progress In Electromagnetics Research B, Vol. 4, 159-169, 2008.
doi:10.2528/PIERB08011404

11. Hady, L. K. and A. A. Kishk, "Electromagnetic scattering from conducting circular cylinder coated by meta-materials and loaded with helical strips under oblique incidence," Progress In Electromagnetics Research B, Vol. 3, 189-206, 2008.
doi:10.2528/PIERB07121107

12. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDTD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112803

13. Gedney, S. D. and R. Mittra, "The use of the FFT for the efficient solution of the problem of electromagnetic scattering by a body of revolution," IEEE Trans. Antennas Propag., Vol. 38, No. 3, 313-322, Mar. 1990.
doi:10.1109/8.52253

14. Abdelmageed, A. K., "Efficient evaluation of modal Green's functions arising in EM scattering by bodies of revolution," Progress In Electromagnetics Research, Vol. 27, 337-356, 2000.
doi:10.2528/PIER99061601

15. Mohsen, A. A. K. and A. K. Abdelmageed, "A fast algorithm for treating EM scattering by bodies of revolution," Int. J. Elect. Commun., Vol. 55, No. 3, 164-170, 2001.
doi:10.1078/1434-8411-00025

16. Yu, W. M., D. G. Fang, and T. J. Cui, "Closed form modal Green's functions for accelerated computation of bodies of revolution," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3452-3461, Nov. 2008.

17. Rui, X., J. Hu, and Q. H. Liu, "Fast inhomogeneous plane wave algorithm for scattering from PEC body of revolution," Microwave Opt. Technol. Lett., Vol. 52, No. 8, 1915-1922, 2010.
doi:10.1002/mop.25319

18. Rui, X., J. Hu, and Q. H. Liu, "Fast inhomogeneous plane wave algorithm for homogeneous dielectric body of revolution," Commun. Comput. Phys., Vol. 8, No. 4, 917-932, 2010.

19. Poggio, A. J. and E. K. Miller, "Integral equation solutions of three-dimensional scattering problems," Computer Techniques for Electromagnetics, 159-264, Pergamon Press, Oxford and New York, 1973.

20. Harrington, R. F., "Boundary integral formulations for homogeneous material bodies," Journal of Electromagnetic Waves and Applications, Vol. 3, No. 1, 1-15, 1989.
doi:10.1163/156939389X00016

21. Wu, T. K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Sci., Vol. 12, No. 5, 709-718, 1997.
doi:10.1029/RS012i005p00709

22. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a perfect electromagnetic conductor cylinder buried in a dielectric half-space," Progress In Electromagnetics Research, Vol. 78, 25-38, 2008.
doi:10.2528/PIER07081601

23. Yuan, J., Y. Qiu, J. L. Guo, Y. Zou, and Q.-Z. Liu, "Fast analysis of antenna characteristics on electrically large composite objects," Progress In Electromagnetics Research, Vol. 80, 29-44, 2008.
doi:10.2528/PIER07111205

24. Hua, Y., Q. Z. Liu, Y. L. Zou, and L. Sun, "A hybrid FE-BI method for electromagnetic scattering from dielectric bodies partially covered by conductors," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 423-430, 2008.
doi:10.1163/156939308784160802

25. Yang, M. L. and X. Q. Sheng, "Parallel high-order FE-BI MLFMA for scattering by large and deep coated cavities loaded with obstacles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1813-1823, 2009.
doi:10.1163/156939309789566932

26. Qu, S. W., C. H. Chan, and Q. Xue, "Ultrawideband composite cavity-backed rounded triangular bowtie antenna with stable patterns," Journal of Electromagnetic Waves and Applications, Vol. 23, 685-695, 2009.
doi:10.1163/156939309788019930

27. Chew, W. C., Waves and Fields in Inhomogeneous Media, New York, 1990.

28. Hu, B., W. C. Chew, E. Michielssen, and J. Zhao, "Fast inhomogeneous plane wave algorithm for the fast analysis of two-dimensional scattering problem," Radio Sci., Vol. 34, No. 4, 759-772, Jul./Aug. 1999.
doi:10.1029/1999RS900038

29. Hu, B., W. C. Chew, and S. Velamparambil, "Fast inhomogeneous plane wave algorithm for the analysis of electromagnetic scattering," Radio Sci., Vol. 36, No. 6, 1327-1340, Nov./Dec. 2001.
doi:10.1029/2000RS002329

30. Jackson, J. D., Classical Electrodynamics, 2 Ed., New York, 1975.

31. Kong, J. A., Electromagnetic Wave Theory, EMW, Cambridge, MA, 2000.

32. Wavenology EM User's Manual, Wave Computation Technologies, Inc., 2009.

33. Xiao, T. and Q. H. Liu, "Enlarged cells for the conformal FDTD method to avoid the time step reduction," IEEE Microwave Wireless Compon. Lett., Vol. 14, No. 12, 551-553, 2004.
doi:10.1109/LMWC.2004.837384

34. Xiao, T. and Q. H. Liu, "A 3-D enlarged cell technique (ECT) for the conformal FDTD method," IEEE Trans. Antennas Propagat., Vol. 56, No. 3, 765-773, Mar. 2008.
doi:10.1109/TAP.2008.916876