Vol. 17
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-09-20
Single Metal Layer CPW Metamaterial Bandpass Filter
By
Progress In Electromagnetics Research Letters, Vol. 17, 153-161, 2010
Abstract
We propose single metal layer metamaterial bandpass filters based on compact complementary u-shaped resonators. Previously, metamaterial bandpass filters could only be achieved if a second conducting layer was utilized. Here, we propose a resonator concept that can directly be integrated with a single sided coplanar waveguide, enabling low fabrication costs and simple system integration. Furthermore, already a single unit cell yields a pronounced bandpass behavior without the need for cascading multiple resonators. Both, measurements and numerical simulations are presented. Using RO3003 as substrate, a low insertion loss of 1.71 dB and a corresponding 3-dB bandwidth ratio of 3.1% is achieved.
Citation
Ibraheem A. I. Al-Naib, Christian Jansen, and Martin Koch, "Single Metal Layer CPW Metamaterial Bandpass Filter," Progress In Electromagnetics Research Letters, Vol. 17, 153-161, 2010.
doi:10.2528/PIERL10081103
References

1. Liao, S., P. Sun, H. Chen, and X. Liao, "Compact-size coplanar waveguide bandpass filter," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 6, 241-243, 2003.
doi:10.1109/LMWC.2003.814601

2. Simons, R. N., Coplanar Waveguide Circuits, Components, and Systems, Wiley-IEEE Press, 2001.

3. Wolff, I., "Coplanar Microwave Integrated Circuits," Wiley-Interscience, 2006.

4. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

5. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory and Technology, Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

6. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, April 2001.
doi:10.1126/science.1058847

7. Martin, F., F. Falcone, J. Bonache, R. Marques, and M. Sorolla, "Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonator," IEEE Microwave Wireless Components Letters, Vol. 13, 511-514, 2003.
doi:10.1109/LMWC.2003.819964

8. Al-Naib, I. A. I., C. Jansen, and M. Koch, "Compact CPW metamaterial resonators for high performance filters," Passive Microwave Components and Antennas, Vitaliy Zhurbenko (ed.), Chapter 20, Intech, 2010.

9. Al-Naib, I. A. I. and M. Koch, "Coplanar waveguides incorporating SRRs or CSRRs: A comprehensive study ," Progress In Electromagnetics Research B, Vol. 23, 343-355, 2010.
doi:10.2528/PIERB10061602

10. Martin, F., J. Bonache, F. Falcone, M. Sorolla, and R. Marques, "Split ring resonator based left-handed coplanar waveguide," Applied Physics Letters, Vol. 83, No. 22, 4652-1-3, 2003.
doi:10.1063/1.1631392

11. Crnojevic-Bengin, V., V. Radonic, and B. Jokanovic, "Left-handed microstrip lines with multiple complementary split-ring and spiral resonators," Microwave and Optical Technology Letters, Vol. 49, No. 6, 1391-1395, 2007.
doi:10.1002/mop.22427

12. Ibraheem, I. A., J. Schoebel, and M. Koch, "Group delay characteristics in coplanar waveguide left-handed media," Journal of Applied Physics, Vol. 103, 024903-1-7, 2008.

13. Al-Naib, I. A. I., C. Jansen, and M. Koch, "Miniaturized bandpass filter based on metamaterials resonators: A conceptual study," Journal of Physics D: Applied Physics, Vol. 41, No. 20, 205002, 2008.
doi:10.1088/0022-3727/41/20/205002

14. Isik, O. and K. P. Esselle, "Design of monofilar and bifilar Archimedean spiral resonators for metamaterial applications," IET Microw. Antennas Propag., Vol. 3, No. 6, 929-935, 2009.
doi:10.1049/iet-map.2008.0298

15. Borja, A. L., J. Carbonell, V. E. Boria, and D. Lippens, "Highly selective left-handed transmission line loaded with split ring resonators and wires ," Applied Physics Letters, Vol. 94, No. 143503, 2009.

16. Ibraheem, I. A. and M. Koch, "Coplanar waveguide metamaterials: The role of bandwidth modifying slots," Applied Physics Letters, Vol. 91, 113517-1-3, 2007.

17. Ansoft HFSSr, http://www.ansoft.com.

18. Dib, N. I., L. P. B. Katehi, G. E. Ponchak, and R. N. Simons, "Theoretical and experimental characterization of coplanar waveguide discontinuities for filter applications," IEEE Trans. Microwave Theory and Technology, Vol. 39, No. 5, 873-882, 1991.
doi:10.1109/22.79116

19. Ponchak, G. E. and L. P. B. Katehi, "Open- and short-circuit terminated series stubs in finite-width coplanar waveguide on silicon," IEEE Trans. Microwave Theory and Technology, Vol. 45, No. 6, 970-976, 1997.
doi:10.1109/22.588611

20. MacLeod, H. A., Thin-film Optical Filters, Taylor & Francis, 2001.

21. Pozar, D. M., Microwave Engineering, John Wiley and Sons, 2005.