Vol. 109
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-10-21
Microwave Diffraction Characteristic Analysis of 2D Multilayered Uniaxial Anisotropic Cylinder
By
Progress In Electromagnetics Research, Vol. 109, 175-190, 2010
Abstract
Here we present the rigorous electrodynamical solution of microwave scattering by a multilayered electrically or (and) magnetically anisotropic circular cylinder. The number and thickness of layers may be arbitrary. We present the solution when all area of multilayered cylinder can be made of different uniaxial anisotropic or isotropic materials. The multilayered cylinder media can be of strongly lossy materials. The signs of the complex permittivity and permeability tensor components can be positive or negative in different combinations. Here we present the numerical dependencies of the Poynting vector radial component Pρ that is responsible for the scattered and absorbed powers when the incident microwave impinges on the anisotropic Lithium Niobate (LiNbO3) cylinder as well as on two single isotropic cylinders. The permittivity tensor components of the anisotropic cylinder are εt=43-i0.0005, εp=28-i0005 as well as for the isotropic cylinders the permittivities are εtp=43-i0.0005 and εtp=28-i0.0005. We show here the pattern of the value Pρ inside and outside of the LiNbO3 and two isotropic cylinders when the polar angle changes from 0 to 360 degrees with the step equal to one degree. We present here our calculations when the incident microwave has perpendicular or parallel polarization at three frequencies 65 GHz, 92.5 GHz and 120 GHz. We found that the values Pρ for the anisotropic cylinder have the opposite behavior of dependencies on the permittivity tensor components for the incident microwaves of different polarizations.
Citation
Juozas Bucinskas, Liudmila Nickelson, and Viktoras Shugurovas, "Microwave Diffraction Characteristic Analysis of 2D Multilayered Uniaxial Anisotropic Cylinder," Progress In Electromagnetics Research, Vol. 109, 175-190, 2010.
doi:10.2528/PIER10072805
References

1. Xi, S., H. Chen, B. Zhang, B.-I. Wu, and J. A. Kong, "Route to low-scattering cylindrical cloaks with finite permittivity and permeability," Physical Review B, Vol. 79, 155122-(1-4), 2009.

2. Han, T. C. and C.-W. Qiu, "Isotropic nonmagnetic flat cloaks degenerated from homogeneous anisotropic trapeziform cloaks," Opt. Express, Vol. 18, No. 12, 13038-13043, 2010.

3. Valagiannopoulos, C. A., "Study of an electrically anisotropic cylinder excited magnetically by a straight strip line," Progress In Electromagnetics Research, Vol. 73, 297-325, 2007.

4. Yu, D.-F., K. Li, J.-J. Yao, and G.-Q. Zhu, "Electromagnetic scattering from anisotropic inhomogeneous impedance cylinder of arbitrary shape with generalized impedance boundary condition," PIERS Proceedings, 598-600, Xi'an, China, March 22-26, 2010.

5. Mazinani, S. M. and H. R. Hassani, "A novel omnidirectional broadband planar monopole antenna with various loading plate shapes," Progress In Electromagnetics Research, Vol. 97, 241-257, 2009.

6. Kusiek, A. and J. Mazur, "Analysis of scattering from arbitrary configuration of cylindrical objects using hybrid finite-difference mode-matching method," Progress In Electromagnetics Research, Vol. 97, 105-127, 2009.

7. Ahmed, S. and Q. A. Naqvi, "Directive EM radiation of a line source in the presence of a coated PEMC circular cylinder," Progress In Electromagnetics Research, Vol. 92, 91-102, 2009.

8. He, Q.-Q., H.-D. He, and H. Lan, "An efficient pattern synthesis method for cylindrical phased array antenas," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 473-482, 2009.

9. He, S., Z. Nie, and J. Hu, "Numerical solution of scattering from thin dielectric-coated conductors based on TDS approximation and EM boundary conditions," Progress In Electromagnetics Research, Vol. 93, 339-354, 2009.

10. Yan, W. Z., Y. Du, Z. Y. Li, E. X. Chen, and J. C. Shi, "Characterization of the validity region of the extended T-matrix method for scattering from dielectric cylinders with finite length," Progress In Electromagnetics Research, Vol. 96, 309-328, 2009.

11. Oraizi, H. and A. Abdolali, "Ultra wide band RCS optimization of multilayered cylindrical structures for arbitrarily polarized incident plane waves," Progress In Electromagnetics Research, Vol. 78, 129-157, 2008.

12. Dai, S. Y., C. M. Zhang, and Z. S. Wu, "Electromagnetic scattering of objects above ground using MRTD/FDTD hybrid method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2187-2196, 2009.

13. Bucinskas, J., L. Nickelson, and V. Sugurovas, "Microwave scattering and absorption by a multilayered lossy metamaterial-glass cylinder," Progress In Electromagnetics Research, Vol. 105, 103-118, 2010.

14. Kong, J. A., Electromagnetic Wave Theory, 1016, EMW Publishing, Cambridge, Massachusetts, USA, 2008.

15. Nickelson, L. and V. Shugurov, Singular Integral Equations' Methods for the Analysis of Microwave Structures, 348, VSP, Brill Academic Publishers, Leiden-Boston, 2005.

16. Volk, T. and M. W-hlecke, Lithium Niobate: Defects, Photore-fraction and Ferroelectric Switching, Springer Series in Materials Sciences, Vol. 115, 248, Springer, 2008.