Vol. 16
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-08-13
V-Band High Isolation Subharmonic Monolithic Mixer with Hairpin Diplexer
By
Progress In Electromagnetics Research Letters, Vol. 16, 161-169, 2010
Abstract
A 54-66 GHz sub-harmonic monolithic passive mixer using the standard 0.15 μm pHEMT process is demonstrated. The proposed mixer is composed of a hairpin diplexer, an open stub, and a low-pass filter. The mixer also utilizes a pair of anti-parallel diodes to achieve a subharmonic mixing mechanism. The hairpin diplexer formed with two parallel-coupled line band-pass filters is used to improve the isolation between the radio frequency (RF) and local oscillation (LO) ports. The low-pass filter supports an intermediate frequency (IF) ranging from dc to 1 GHz. This proposed configuration leads to a die size of less than 1.5 mm2. With a conversion loss of 15.2--18.3 dB, the 2LO-to-RF isolation is found to be better than 27.5 dB. A high LO-to-RF isolation of 23.5--45 dB over 54--66 GHz RF bandwidth, as well as 1 dB compression power of 8 dBm, can be achieved.
Citation
Shih-Han Hung, Wei-Chih Chien, Chih-Ming Lin, Yu-Ann Lai, and Yeong-Her Wang, "V-Band High Isolation Subharmonic Monolithic Mixer with Hairpin Diplexer," Progress In Electromagnetics Research Letters, Vol. 16, 161-169, 2010.
doi:10.2528/PIERL10070701
References

1. Lin, C. H., Y. A. Lai, J. C. Chiu, and Y. H. Wang, "A 23-37 GHz miniature MMIC subharmonic mixer," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 9, 679-681, Sep. 2007.
doi:10.1109/LMWC.2007.903460

2. Lin, C.-M., J.-T. Chang, C.-C. Su, S.-H. Hung, and Y.-H. Wang, "A 16-31 GHz miniature quadruple subharmonic monolithic mixer with lumped diplexer," Progress In Electromagnetics Research Letters, Vol. 11, 21-30, 2009.
doi:10.2528/PIERL09072705

3. Lin, C. M., H. K. Lin, Y. A. Lai, C. P. Chang, and Y. H.Wang, "A 10-40 GHz broadband subharmonic monolithic mixer in 0.18 μm CMOS technology," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 2, 95-97, Feb. 2009.
doi:10.1109/LMWC.2008.2011330

4. Bao, M. and H. Jacobsson, "A 9-31-GHz subharmonic passive mixer in 90-nm CMOS technology," IEEE Journal of Solid-state Circuits, Vol. 41, No. 10, 2257-2264, 2006.
doi:10.1109/JSSC.2006.881551

5. Srisathit, S., S. Patisang, R. Phromloungsri, S. Bunnjaweht, S. Kosulvit, and M. Chongcheawchamnan, "High isolation and compact size microstrip hairpin diplexer," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 2, 101-103, Feb. 2005.
doi:10.1109/LMWC.2004.842839

6. Cohn, M., J. E. Degenford, and B. A. Newman, "Harmonic mixing with an antiparallel diode pair," IEEE Trans. Microw. Theory Tech., Vol. 23, No. 8, 667-673, Aug. 1975.
doi:10.1109/TMTT.1975.1128646

7. Medley, M. W., Microwave and RF Circuits: Analysis, Synthesis, and Design, Artech House, Inc., Norwood, MA, 1992.

8. Bahl, I. J. and P. Bhartia, Microwave Solid-state Circuit Design, 2 Ed., Ch. 6, Wiley, New York, 2003.

9. Johansen, T. K., J. Vidkjær, V. Krozer, and A. Konczykowska, "A high conversion-gain Q-band InP DHBT subharmonic mixer using LO frequency doubler," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 3, 916-892, Mar. 2008.
doi:10.1109/TMTT.2008.916892

10. Lee, B. H., S. C. Kim, M. K. Lee, and W. S. Sul, "Q-band high conversion gain active sub-harmonic mixer," Current Appl. Phys., Vol. 4, 69-73, 2004.
doi:10.1016/j.cap.2003.09.015