Vol. 23
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-07-25
Support Vector Machines for the Classification of Early-Stage Breast Cancer Based on Radar Target Signatures
By
Progress In Electromagnetics Research B, Vol. 23, 311-327, 2010
Abstract
Microwave Imaging (MI) has been widely investigated as a method to detect early stage breast cancer based on the dielectric contrast between normal and cancerous breast tissue at microwave frequencies. Furthermore, classification methods have been developed to differentiate between malignant and benign tumours. To successfully classify tumours using Ultra Wideband (UWB) radar, other features have to be examined other than simply the dielectric contrast between benign and malignant tumours, as contrast alone has been shown to be insuficient. In this context, previous studies have investigated the use of the Radar Target Signature (RTS) of tumours to give valuable information about the size, shape and surface texture. In this study, a novel classification method is examined, using Principal Component Analysis (PCA) to extract the most important tumour features from the RTS. Support Vector Machines (SVM) are then applied to the principal components as a method of classifying these tumours. Finally, several different classification architectures are compared. In this study the performance of classifiers is tested using a database of 352 tumour models, comprising four different sizes and shapes, using the cross validation method.
Citation
Raquel Cruz Conceicao, Martin O'Halloran, Martin Glavin, and Edward Jones, "Support Vector Machines for the Classification of Early-Stage Breast Cancer Based on Radar Target Signatures," Progress In Electromagnetics Research B, Vol. 23, 311-327, 2010.
doi:10.2528/PIERB10062407
References

1. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001

2. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002

3. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE T-BME, Vol. 45, 1470-1479, 1998.
doi:10.1109/10.730440

4. Hagness, S. C., A. Taflove, and J. E. Bridges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna-array element," IEEE T-AP, Vol. 47, No. 5, 783-791, 1999.

5. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE T-BME, Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759

6. Meaney, P. M., K. D. Paulsen, J. T. Chang, M. W. Fanning, and A. Hartov, "Nonactive antenna compensation for fixed-array microwave imaging: Part II --- Imaging results," IEEE T-MI, Vol. 18, No. 6, 508-518, 1999.
doi:10.1109/42.781016

7. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE T-MTT, Vol. 48, No. 11, 1841-1853, 2000.
doi:10.1109/22.883861

8. Meaney, P. M., M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, et al. "Initial clinical experience with microwave breast imaging in women with normal mammography," Acad. Radiol., Vol. 14, No. 2, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016

9. Souvorov, A. E., A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, and G. P. Tatsis, "Two-dimensional computer analysis of a microwave flat antenna array for breast cancer tomography," IEEE T-MTT, Vol. 48, No. 8, 1413-1415, 2000.
doi:10.1109/22.859490

10. Bulyshev, A. E., S. Y. Semenov, A. E. Souvorov, R. H. Svenson, A. G. Nazarov, et al. "Computational modeling of three-dimensional microwave tomography of breast cancer," IEEE T-BME, Vol. 48, No. 9, 1053-1056, 2001.
doi:10.1109/10.942596

11. Liu, Q. H., Z. Q. Zhang, T. T. Wang, J. A. Bryan, G. A. Ybarra, et al. "Active microwave imaging I --- 2-D forward and inverse scattering methods," IEEE T-MTT, Vol. 50, No. 1, 123-133, 2002.
doi:10.1109/22.981256

12. Kosmas, P. and C. M. Rappaport, "Time reversal with the FDTD method for microwave breast cancer detection," IEEE T-MTT, Vol. 53, No. 7, 2317-2323, 2005.
doi:10.1109/TMTT.2005.850444

13. Kosmas, P. and C. M. Rappaport, "FDTD-based time reversal for microwave breast cancer detection --- Localization in three dimensions," IEEE T-MTT, Vol. 54, No. 4, 1921-1927, 2006.
doi:10.1109/TMTT.2006.871994

14. Kosmas, P. and C. M. Rappaport, "A matched-filter FDTD-based time reversal approach for microwave breast cancer detection," IEEE T-AP, Vol. 54, No. 4, 1257-1264, 2006.

15. Chen, Y., E. Gunawan, K. S. Low, S.-C. Wang, C. B. Soh, et al. "Effect of lesion morphology on microwave signature in ultra-wideband breast imaging: A preliminary two-dimensional investigation," IEEE AP-S International Symposium, 2168-2171, 2007.

16. Chen, Y., E. Gunawan, K. S. Low, S.-C. Wang, C. B. Soh, et al. "Effect of lesion morphology on microwave signature in 2-D ultra-wideband breast imaging," IEEE T-BME, Vol. 55, No. 8, 2011-2021, 2008.
doi:10.1109/TBME.2008.921136

17. Rangayyan, R. M., N. M. El-Faramawy, J. E. L. Desautels, and O. A. Alim, "Measures of acutance and shape for classification of breast tumors," IEEE T-MI, Vol. 16, No. 6, 799-810, 1997.
doi:10.1109/42.650876

18. Chen, Y., I. J. Craddock, and P. Kosmas, "Feasibility study of lesion classification via contrast-agent-aided UWB breast imaging," IEEE T-BME, Vol. 57, No. 5, 1003-1007, 2010.
doi:10.1109/TBME.2009.2038788

19. Davis, S. K., B. D. V. Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE T-BME, Vol. 55, No. 1, 237-246, 2008.
doi:10.1109/TBME.2007.900564

20. Muinonen, K., "Introducing the Gaussian shape hypothesis for asteroids and comets," Astronomy and Astrophysics, Vol. 332, 1087-1098, 1998.

21. Muinonen, K., Light Scattering by Stochastically Shaped Particles, in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, Academic Press, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis (eds.), Chapter 11, 2000.

22. Conceição, R. C., D. Byrne, M. O'Halloran, M. Glavin, and E. Jones, "Investigation of classifiers for early-stage breast cancer based on radar target signatures," 16th IET ISSC 2008, Vol. 1, 60-65, Galway, Ireland, 2008.

24. Nguyen, T. M. and R. M. Rangayyan, "Shape analysis of breast masses in mammograms via the fractial dimension," Engineering in Medicine and Biology 27th Annual Conference, 3210-3213, Shangai, China, 2005.
doi:10.1109/IEMBS.2005.1617159

25. Guliato, D., R. M. Rangayyan, J. D. Carvalho, and S. A. Santiago, "Polygonal modeling of contours of breast tumors with the preservation of spicules," IEEE T-BME, Vol. 55, No. 1, 14-20, 2008.
doi:10.1109/TBME.2007.899310

26. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 2nd Ed., Artech House, 2000.

27. Wold, H., "Estimation of principal components and related models by iterative least squares," Multivariate Analysis, 391-420, K. R. Krishnaiah (ed.), Academic Press, New York 1996.

28. Shlens, J., A tutorial on principal component analysis, Available from: http://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition jp.pdf, Mar. 25, 2003.

29. Bartholomew, D. J., F. Steele, I. Moustak, and J. I. Galbraith, "The analysis and interpretation of multivariate data for social scientists," Statistical Science, Chapman & Hall/CRC, USA, 2002.

30. Hsu, C.-W., C.-C. Chang, and C.-J. Lin, A practical guide to support vector classification, Available from: www.csie.ntu.edu.tw/ ~ cjlin/papers/guide/guide.pdf, Apr. 3, 2010.

31. Boser, B. E., I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal margin classifiers," Proc. of the 5th Annual Workshop on Computational Learning Theory, 144-152, Pittsburgh, Pennsylvania, 1992.

32. Cortes, C. and V. Vapnik, "Support-vector networks," Machine Learning, Vol. 20, No. 3, 273-297, 1995.

33. Ng, A., Support vector machines (Part V of CS229 machine learning course materials), Available from: http://www.stanford.edu/class/cs229/notes/cs229-notes3.pdf, May 13, 2010.

34. Bennett, K. P. and C. Campbell, "Support vector machines: Hype or hallelujah?," ACM SIGKDD Explorations Newsletter, Vol. 2, No. 2, 1-13, 2000.
doi:10.1145/380995.380999

35. Campbell, C., Introduction to support vector machines, Available from: http://videolectures.net/epsrcws08 camp-bell isvm/, Feb. 5, 2008.

36. Donelli, M., F. Viani, P. Rocca, and A. Massa, "An innovative multiresolution approach for DOA estimation based on a support vector classification," IEEE T-AP, Vol. 57, No. 8, 2279-2292, 2009.

37. Viani, F., P. Meaney, P. Rocca, R. Azaro, M. Donelli, et al. "Numerical validation and experimental results of a multi-resolution SVM-based classification procedure for breast imaging," IEEE AP-S International Symposium, APSURSI, 1-4, Charleston, USA, 2009.