1. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001
2. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002
3. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE T-BME, Vol. 45, 1470-1479, 1998.
doi:10.1109/10.730440
4. Hagness, S. C., A. Taflove, and J. E. Bridges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna-array element," IEEE T-AP, Vol. 47, No. 5, 783-791, 1999.
5. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE T-BME, Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759
6. Meaney, P. M., K. D. Paulsen, J. T. Chang, M. W. Fanning, and A. Hartov, "Nonactive antenna compensation for fixed-array microwave imaging: Part II --- Imaging results," IEEE T-MI, Vol. 18, No. 6, 508-518, 1999.
doi:10.1109/42.781016
7. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE T-MTT, Vol. 48, No. 11, 1841-1853, 2000.
doi:10.1109/22.883861
8. Meaney, P. M., M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, et al. "Initial clinical experience with microwave breast imaging in women with normal mammography," Acad. Radiol., Vol. 14, No. 2, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016
9. Souvorov, A. E., A. E. Bulyshev, S. Y. Semenov, R. H. Svenson, and G. P. Tatsis, "Two-dimensional computer analysis of a microwave flat antenna array for breast cancer tomography," IEEE T-MTT, Vol. 48, No. 8, 1413-1415, 2000.
doi:10.1109/22.859490
10. Bulyshev, A. E., S. Y. Semenov, A. E. Souvorov, R. H. Svenson, A. G. Nazarov, et al. "Computational modeling of three-dimensional microwave tomography of breast cancer," IEEE T-BME, Vol. 48, No. 9, 1053-1056, 2001.
doi:10.1109/10.942596
11. Liu, Q. H., Z. Q. Zhang, T. T. Wang, J. A. Bryan, G. A. Ybarra, et al. "Active microwave imaging I --- 2-D forward and inverse scattering methods," IEEE T-MTT, Vol. 50, No. 1, 123-133, 2002.
doi:10.1109/22.981256
12. Kosmas, P. and C. M. Rappaport, "Time reversal with the FDTD method for microwave breast cancer detection," IEEE T-MTT, Vol. 53, No. 7, 2317-2323, 2005.
doi:10.1109/TMTT.2005.850444
13. Kosmas, P. and C. M. Rappaport, "FDTD-based time reversal for microwave breast cancer detection --- Localization in three dimensions," IEEE T-MTT, Vol. 54, No. 4, 1921-1927, 2006.
doi:10.1109/TMTT.2006.871994
14. Kosmas, P. and C. M. Rappaport, "A matched-filter FDTD-based time reversal approach for microwave breast cancer detection," IEEE T-AP, Vol. 54, No. 4, 1257-1264, 2006.
15. Chen, Y., E. Gunawan, K. S. Low, S.-C. Wang, C. B. Soh, et al. "Effect of lesion morphology on microwave signature in ultra-wideband breast imaging: A preliminary two-dimensional investigation," IEEE AP-S International Symposium, 2168-2171, 2007.
16. Chen, Y., E. Gunawan, K. S. Low, S.-C. Wang, C. B. Soh, et al. "Effect of lesion morphology on microwave signature in 2-D ultra-wideband breast imaging," IEEE T-BME, Vol. 55, No. 8, 2011-2021, 2008.
doi:10.1109/TBME.2008.921136
17. Rangayyan, R. M., N. M. El-Faramawy, J. E. L. Desautels, and O. A. Alim, "Measures of acutance and shape for classification of breast tumors," IEEE T-MI, Vol. 16, No. 6, 799-810, 1997.
doi:10.1109/42.650876
18. Chen, Y., I. J. Craddock, and P. Kosmas, "Feasibility study of lesion classification via contrast-agent-aided UWB breast imaging," IEEE T-BME, Vol. 57, No. 5, 1003-1007, 2010.
doi:10.1109/TBME.2009.2038788
19. Davis, S. K., B. D. V. Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE T-BME, Vol. 55, No. 1, 237-246, 2008.
doi:10.1109/TBME.2007.900564
20. Muinonen, K., "Introducing the Gaussian shape hypothesis for asteroids and comets," Astronomy and Astrophysics, Vol. 332, 1087-1098, 1998.
21. Muinonen, K., Light Scattering by Stochastically Shaped Particles, in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, Academic Press, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis (eds.), Chapter 11, 2000.
22. Conceição, R. C., D. Byrne, M. O'Halloran, M. Glavin, and E. Jones, "Investigation of classifiers for early-stage breast cancer based on radar target signatures," 16th IET ISSC 2008, Vol. 1, 60-65, Galway, Ireland, 2008.
24. Nguyen, T. M. and R. M. Rangayyan, "Shape analysis of breast masses in mammograms via the fractial dimension," Engineering in Medicine and Biology 27th Annual Conference, 3210-3213, Shangai, China, 2005.
doi:10.1109/IEMBS.2005.1617159
25. Guliato, D., R. M. Rangayyan, J. D. Carvalho, and S. A. Santiago, "Polygonal modeling of contours of breast tumors with the preservation of spicules," IEEE T-BME, Vol. 55, No. 1, 14-20, 2008.
doi:10.1109/TBME.2007.899310
26. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 2nd Ed., Artech House, 2000.
27. Wold, H., "Estimation of principal components and related models by iterative least squares," Multivariate Analysis, 391-420, K. R. Krishnaiah (ed.), Academic Press, New York 1996.
28. Shlens, J., A tutorial on principal component analysis, Available from: http://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition jp.pdf, Mar. 25, 2003.
29. Bartholomew, D. J., F. Steele, I. Moustak, and J. I. Galbraith, "The analysis and interpretation of multivariate data for social scientists," Statistical Science, Chapman & Hall/CRC, USA, 2002.
30. Hsu, C.-W., C.-C. Chang, and C.-J. Lin, A practical guide to support vector classification, Available from: www.csie.ntu.edu.tw/ ~ cjlin/papers/guide/guide.pdf, Apr. 3, 2010.
31. Boser, B. E., I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal margin classifiers," Proc. of the 5th Annual Workshop on Computational Learning Theory, 144-152, Pittsburgh, Pennsylvania, 1992.
32. Cortes, C. and V. Vapnik, "Support-vector networks," Machine Learning, Vol. 20, No. 3, 273-297, 1995.
33. Ng, A., Support vector machines (Part V of CS229 machine learning course materials), Available from: http://www.stanford.edu/class/cs229/notes/cs229-notes3.pdf, May 13, 2010.
34. Bennett, K. P. and C. Campbell, "Support vector machines: Hype or hallelujah?," ACM SIGKDD Explorations Newsletter, Vol. 2, No. 2, 1-13, 2000.
doi:10.1145/380995.380999
35. Campbell, C., Introduction to support vector machines, Available from: http://videolectures.net/epsrcws08 camp-bell isvm/, Feb. 5, 2008.
36. Donelli, M., F. Viani, P. Rocca, and A. Massa, "An innovative multiresolution approach for DOA estimation based on a support vector classification," IEEE T-AP, Vol. 57, No. 8, 2279-2292, 2009.
37. Viani, F., P. Meaney, P. Rocca, R. Azaro, M. Donelli, et al. "Numerical validation and experimental results of a multi-resolution SVM-based classification procedure for breast imaging," IEEE AP-S International Symposium, APSURSI, 1-4, Charleston, USA, 2009.