Vol. 106
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-07-21
Multi-Wavelength Fiber Optical Parametric Oscillator Based on a Highly Nonlinear Fiber and a Sagnac Loop Filter
By
Progress In Electromagnetics Research, Vol. 106, 163-176, 2010
Abstract
A novel multi-wavelength fiber optical parametric oscillator (MW-FOPO) with a ring cavity structure is proposed. In the ring cavity of the MW-FOPO, a Sagnac loop filter which is formed by a 3-dB optical coupler, a polarization controller and a segment of polarization maintained fiber is used as the comb filter, and a segment of highly nonlinear fiber is used as the gain medium. Multi-wavelength lasing of the MW-FOPO with a wavelength spacing of about 0.8nm is achieved and its power stability at room temperature is demonstrated by measuring peak power fluctuation within 42 minutes for 5 lasing wavelengths. The output spectrum of the MW-FOPO covers a large wavelength region from 1500nm to 1610 nm. A comparison of the output spectra between the MW-FOPO and the multi-wavelength Erbium-doped fiber laser is also presented.
Citation
Daru Chen, and Bing Sun, "Multi-Wavelength Fiber Optical Parametric Oscillator Based on a Highly Nonlinear Fiber and a Sagnac Loop Filter," Progress In Electromagnetics Research, Vol. 106, 163-176, 2010.
doi:10.2528/PIER10061506
References

1. Littman, M. G. and H. J. Metcalf, "Spectrally narrow pulsed dye laser without beam expander," Appl. Opt., Vol. 17, 2224-2227 , 1978.
doi:10.1364/AO.17.002224

2. Tajima, T. and J. M. Dawson, "Laser electron accelerator," Phys. Rev. Lett., Vol. 43, 267-270, 1979.
doi:10.1103/PhysRevLett.43.267

3. Witteman, W. J., "The CO2 laser," Springer Series in Optical Sciences, Vol. 53, Springer-Verlag, Berlin and New York, 1987.

4. Agrawal, G. P. and N. K. Dutta, Long Wavelength Semiconductor Lasers, Van Nostrand Reinhold Co. Inc., 1986.

5. Numai, T., Fundamentals of Semiconductor Lasers, Springer, 2004.

6. Koechner, W., Solid-state Laser Engineering, Springer Science & Business Media, Inc., 2006.

7. Arakawa, Y. and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett., Vol. 40, 939-941, 1982.
doi:10.1063/1.92959

8. Denk, W., J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fuorescence microscopy," Science, Vol. 248, 73-76, 1990.
doi:10.1126/science.2321027

9. Meng, X. G., J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, "Near infrared broadband emission of bismuth-doped aluminophosphate glass," Opt. Express, Vol. 13, 1628-1634, 2005.
doi:10.1364/OPEX.13.001628

10. Ball, G. A. and W. W. Morey, "Compression-tuned single-frequency Bragg grating fiber laser," Opt. Lett., Vol. 19, 1979-1981, 1994.
doi:10.1364/OL.19.001979

11. Limpert, J., T. Schreiber, S. Nolte, H. Zellmer, A. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express, Vol. 11, 818-923, 2003.
doi:10.1364/OE.11.000818

12. Jeong, Y., J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express, Vol. 12, 6088-6092, 2004.
doi:10.1364/OPEX.12.006088

13. Huber, R., M. Wojtkowski, and J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating region and applications for optical coherence tomography," Opt. Express, Vol. 14, 3225-3237, 2006.
doi:10.1364/OE.14.003225

14. Wang, M. J., Z. S. Wu, Y. L. Li, and G. Zhang, "High resolution range profile identifying simulation of laser radar based on pulse beam scattering characteristics of targets," Progress In Electromagnetics Research, Vol. 96, 193-204, 2009.
doi:10.2528/PIER09041901

15. Shwetanshumala, S. Jana and S. Konar, "Propagation of a mixture of modes of a laser beam in a medium with saturable nonlinearity," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 65-77, 2006.
doi:10.1163/156939306775777422

16. Fu, X., C. Cui, and S. C. Chan, "Optically injected semiconductor laser for photonic microwave frequency mixing in radio-over-fiber," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 849-860, 2010.
doi:10.1163/156939310791285236

17. Wei, H. Y. and Z. S. Wu, "Study on the effect of laser beam propagation on the slant path through atmospheric turbulence," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5/6, 787-802, 2008.
doi:10.1163/156939308784159525

18. Li, J., J. Wang, and F. Jing, "Improvement of coiling mode to suppress higher-order-modes by considering mode coupling for large-mode-area fiber laser," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8/9, 1113-1124, 2010.
doi:10.1163/156939310791586070

19. Maiman, T. H., "Stimulated optical radiation in ruby masers," Nature, Vol. 187, 439-440, 1960.

20. Han, Y., T. V. A. Tran, S. Kim, and S. B. Lee, "Multiwave-length Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature," Opt. Lett., Vol. 30, 1282-1284, 2005.
doi:10.1364/OL.30.001282

21. Ou, H., H. Fu, D. Chen, and S. He, "A tunable and reconfigurable microwave photonic filter based on a Raman fiber laser," Opt. Commun., Vol. 178, No. 1, 48-51, 2007.
doi:10.1016/j.optcom.2007.05.041

22. Shen, G. F., X. M. Zhang, H. Chi, and X. F. Jin, "Microwave/millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser," Progress In Electromagnetics Research, Vol. 80, 307-320, 2008.
doi:10.2528/PIER07112202

23. Liu, S. C., Z. W. Yin, L. Zhang, X. F. Chen, L. Gao, and J. C. Cheng, "Dual-wavelength FBG laser sensor based on photonic generation of radio frequency demodulation technique," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2177-2185, 2009.
doi:10.1163/156939309790109252

24. Moon, D. S., U.-C. Paek, and Y. Chang, "Multi-wavelength lasing oscillations in an Erbium-doped fiber laser using few-mode fiber Bragg grating," Opt. Express, Vol. 12, 6147-6152, 2004.
doi:10.1364/OPEX.12.006147

25. Liu, X., X. Yang, F. Lu, J. Ng, and X. Zhou, "Stable and uniform dual-wavelength Erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber," Opt. Express, Vol. 13, 142-147, 2006.

26. Han, Y.-G., T. V. A. Tran, and A. B. Lee, "Wavelength-spacing tunable multi-wavelength Erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber," Opt. Lett., Vol. 31, 697-699, 2006.
doi:10.1364/OL.31.000697

27. Chen, D., "Stable multi-wavelength erbium-doped fiber laser based on a photonic crystal fiber Sagnac loop filter," Laser Phys. Lett., Vol. 4, 437-439, 2007.
doi:10.1002/lapl.200710003

28. Qin, S., D. Chen, Y. Tang, and S. He, "Stable and uniform multi-wavelength fiber laser based on hybrid Raman and Erbium-doped fiber gains," Opt. Express, Vol. 14, 10522-10527, 2006.
doi:10.1364/OE.14.010522

29. Yamishita, S. and T. Baba, "Spacing-tunable multiwavelength fiber laser," Electron. Lett., Vol. 37, 1015-1517, 2001.
doi:10.1049/el:20010690

30. De Matos, C. J. S., D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor, "Multi-wavelength, continuous wave fibre Raman ring laser operating at 1.55 μm," Electron. Lett., Vol. 37, 825-826, 2001.
doi:10.1049/el:20010574

31. Han, Y.-G., C.-S. Kim, J. U. Kand, U.-C. Paek, and Y. Chung, "Multiwavelength Raman fiber-ring laser based on tunable cascaded logn-period fiber gratings," IEEE Photon. Technol. Lett., Vol. 15, 383-385, 2003.

32. Dong, X. Y., P. Shum, N. Q. Ngo, and C. C. Chan, "Multiwavelength Raman fiber laser with a continuously-tunable spacing," Opt. Express, Vol. 14, 3288-3293, 2006.
doi:10.1364/OE.14.003288

33. Chen, D., S. Qin, L. Shen, H. Chi, and S. He, "An all-fiber multi-wavelength raman laser based on a PCF sagnac loop filter," Microw. and Opt. Techn. Lett., Vol. 48, 2416-2418, 2006.
doi:10.1002/mop.21968

34. Cowle, G. J. and D. Y. Stepanov, "Multiple wavelength generation with Brillouin/erbium fiber lasers," IEEE Photon. Technol. Lett., Vol. 8, 1465-1467, 1996.
doi:10.1109/68.541551

35. Bumki, M., P. Kim, and N. Park, "Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber," IEEE Photon. Technol. Lett., Vol. 13, 1352-1354, 2001.
doi:10.1109/68.969905

36. Ahmad, H., M. Z. Zulkifli, S. F. Norizan, A. A. Latif, and S. W. Harun, "Controllable wavelength channels for multiwavelength Brillouin Bismuth/Erbium based fiber laser," Progress In Electromagnetics Research Letters, Vol. 9, 9-18, 2009.
doi:10.2528/PIERL09031905

37. Qureshi, K. K., H. Y. Tam, W. H. Chung, and P. K. A. Wai, "Multiwavelength laser source using linear optical amplifier," IEEE Photon. Technol. Lett., Vol. 17, 1611-1613, 2005.
doi:10.1109/LPT.2005.851912

38. Lee, Y. W., J. Jung, and B. Lee, "Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter," IEEE Photon. Technol. Lett., Vol. 16, 54-56, 2004.
doi:10.1109/LPT.2003.819414

39. Liu, D., N. Q. Ngo, H. Liu, and D. Liu, "Stable multiwavelength fiber ring laser with equalized power spectrum based on a semiconductor optical amplifier," Opt. Commun., Vol. 282, 1598-1601, 2009.
doi:10.1016/j.optcom.2008.12.045

40. Zhang, Z., W. Jian, K. Xu, X. Hong, and J. Lin, "Tunable multiwavelength SOA fiber laser with ultra-narrow wavelength spacing based on nonlinear polarization rotation," Opt. Express, Vol. 17, 17200-17205, 2009.
doi:10.1364/OE.17.017200

41. Pan, S. L., C. Y. Lou, and Y. Z. Gao, "Multiwavelength Erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter," Opt. Express, Vol. 14, 1113-1118, 2006.
doi:10.1364/OE.14.001113

42. Marhid, M. E., K. K.-Y. Wong, G. Kalogerakis, and L. G. Kazovsky, "Toward practical fiber optical parametric amplifiers and oscillators," Optics & Photonics News, 21-25, 2004.

43. Ho, M., K. Uesaka, Y. Akasaka, and L. G. Kazovsky, "200-nm-bandwidth fiber optical amplifier combing parametric and Raman gain," J. Lightwave Technol., Vol. 19, 977-981, 2001.

44. Wong, K. K.-Y., K. Shimizu, K. Uesaka, G. Kalogerakis, M. E. Marhic, and L. G. Kazovsky, "Continuous-wave fiber optical parametric amplifier with 60-dB gain using a novel two segment design," IEEE Photon. Technol. Lett., Vol. 15, 1707-1709, 2003.
doi:10.1109/LPT.2003.819706

45. Gao, M., C. Jiang, W. Hu, and J. Wang, "Optimized design of two-pump fiber optical parametric amplifier with two-section nonlinear fibers using genetic algorithm," Opt. Express, Vol. 12, 5603-5613, 2004.
doi:10.1364/OPEX.12.005603

46. Dahan, D. and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: A route to all optical buffering," Opt. Express, Vol. 13, 6234-6249, 2005.
doi:10.1364/OPEX.13.006234

47. Torounidis, T., P. A. Andrekson, and B. Olsson, "Fiber-optical parametric amplifier with 70-dB gain," IEEE Photon. Technol. Lett., Vol. 18, 1194-1196, 2006.
doi:10.1109/LPT.2006.874714

48. Wong, K. K. Y., G. Lu, and L. Chen, "Polarization-interleaved WDM signals in a fiber optical parametric amplifier with orthogonal pumps," Opt. Express, Vol. 15, 56-61, 2007.
doi:10.1364/OE.15.000056

49. Singh, S. P., R. Gangwar, and N. Singh, "Nonlinear scattering effects in optical fibers," Progress In Electromagnetics Research, Vol. 74, 379-405, 2007.
doi:10.2528/PIER07051102

50. Andalib, A., A. Rostami, and N. Grangpayeh, "Analytical investigation and evaluation of pulse broadening factor propagating through nonlinear optical ¯bers (traditional and optimum dispersion compensated fibers)," Progress In Electromagnetics Research, Vol. 79, 119-136, 2008.
doi:10.2528/PIER07092502

51. Lasri, J., P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm region," IEEE Photon. Technol. Lett., Vol. 15, 1058-1060, 2003.
doi:10.1109/LPT.2003.815333

52. De Matos, C. J. S., J. R. Taylor, and K. P. Hansen, "Continouswave, totally fiber integrated optical parametric oscillator using holey fiber," Opt. Lett., Vol. 29, 983-985, 2004.
doi:10.1364/OL.29.000983

53. Zhou, Y., K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, "Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber," Opt. Lett., Vol. 34, 989-992, 2009.
doi:10.1364/OL.34.000989

54. Sharping, J. E., J. R. Sanborn, M. A. Foster, D. Broaddus, and A. L. Gaeta, "Generation of sub-100-fs pulses from a microstructure-fiber-based optical parametric oscillator," Opt. Express, Vol. 16, 18050-18056, 2008.
doi:10.1364/OE.16.018050

55. Sharping, J. E., C. Pailo, C. Gu, L. Kiani, and J. R. Sanborn, "Microstructure fiber optical parametric oscillator with femtosecond output in the 1200 to 1350 nm wavelength range," Opt. Express, Vol. 18, 3911-3916, 2010.
doi:10.1364/OE.18.003911

56. Zhuang, W. Z., W. C. Huang, Y. P. Huang, K. W. Su, and Y. F. Chen, "Passively Q-switched photonic crystal fiber laser and intracavity optical parametric oscillator," Opt. Express, Vol. 18, 8969-8975, 2010.
doi:10.1364/OE.18.008969

57. Wong, G. K. L., S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, "High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator," Opt. Express, Vol. 15, 2947-2952, 2007.
doi:10.1364/OE.15.002947

58. Xu, Y. Q., S. G. Murdoch, R. Leonhardt, and J. D. Harvey, "Widely tunable photonic crystal fiber Fabry-Perot optical parametric oscillator," Opt. Lett., Vol. 33, 1351-1353, 2008.
doi:10.1364/OL.33.001351

59. Xu, Y. Q., S. G. Murdoch, R. Leonhardt, and J. D. Harvey, "Raman-assisted continuous-wave tunable all-fiber optical parametric oscillator," J. Opt. Soc. Am. B, Vol. 26, 1351-1356, 2009.
doi:10.1364/JOSAB.26.001351

60. Yang, S., X. Xu, Y. Zhou, K. K. Y. Cheung, and K. K. Y. Wong, "Continuous-wave single-longitudinal-mode fiber-optical parametric oscillator with reduced pump threshold," IEEE Photon. Technol. Lett., Vol. 21, 1870-1872, 2009.
doi:10.1109/LPT.2009.2035056

61. Luo, Z., W. D. Zhong, Z. Cai, C. Ye, H. Xu, X. Dong, and L. Xia, "Multiwavelength fiber optical parametric oscillator," IEEE Photon. Technol. Lett., Vol. 21, 1609-1611, 2009.
doi:10.1109/LPT.2009.2030778

62. Kim, D. H. and J. U. Kang, "Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity," Opt. Express, Vol. 12, 4490-4495, 2004.
doi:10.1364/OPEX.12.004490