Vol. 13
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-07-12
Parameter Extraction for Microwave Coupled Resonator Filters Using Rational Model and Optimization
By
Progress In Electromagnetics Research M, Vol. 13, 109-119, 2010
Abstract
A method is presented for the parameter extraction of microwave coupled resonator filters. The method is based on the estimation of a rational model of the filters. From these rational functions, a circuit network having the previously know topology is optimized. Two simple and efficient error functions are used to reduce the computational effort of the optimization while improving the speed and robustness of diagnosis process for lossless and lossy filters, respectively. Two numerical examples are presented to demonstrate the efficiency of the proposed technique. One deals with numerical simulation data from a full-wave electromagnetic simulation and the other one uses the measured data.
Citation
Jie Peng, Bian Wu, Chang-Hong Liang, and Xue-Feng Li, "Parameter Extraction for Microwave Coupled Resonator Filters Using Rational Model and Optimization," Progress In Electromagnetics Research M, Vol. 13, 109-119, 2010.
doi:10.2528/PIERM10060804
References

1. Dunsmore, J., "Simplify filter tuning in the time domain," Microwaves & RF, Vol. 38, No. 4, 68-84, 1999.

2. Hsu, H. T., H. W. Yao, K. A. Zaki, and A. E. Atia, "Computeraided diagnosis and tuning of cascaded coupled resonators filters," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 4, 1137-1145, 2002.
doi:10.1109/22.993417

3. Masoud, K., S.-N. Safieddin, K. C. Sujeet, and S. Ramin, "Computer diagnosis and tuning of RF and microwave filters using model-based parameter estimation," IEEE Trans. Circuits and Systems, Vol. 49, No. 9, 1263-1270, 2002.
doi:10.1109/TCSI.2002.802363

4. Miller, E. K. and T. K. Sarkar, "Model-order reduction in electromagnetics using model-based parameters estimation," Frontiers in Electromagnetics, 371-436, IEEE Press, Piscataway, NJ, 1999.

5. Meng, M. and K.-L. Wu, "An analytical approach to computer-aided diagnosis and tuning of lossy microwave coupled resonator filters," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 12, 3188-3195, 2009.
doi:10.1109/TMTT.2009.2033868

6. Garcia-Lamperez, A., T. K. Sarkar, and M. Salazar-Palma, "Generation of accurate rational models of lossy systems using the Cauchy method," IEEE Microwave and Wireless Compon. Lett., Vol. 14, No. 10, 490-492, 2004.
doi:10.1109/LMWC.2004.834576

7. Macchiarella, G. and D. Traina, "A formulation of the Cauchy method suitable for the synthesis of lossless circuit models of microwave filters from lossy measurements," IEEE Microwave and Wireless Compon. Lett., Vol. 16, No. 5, 243-245, 2006.
doi:10.1109/LMWC.2006.873583

8. Miraftab, V. and M. Yu, "Generalized lossy microwave filter coupling matrix synthesis and design using mixed technologies," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 12, 3016-3027, 2008.
doi:10.1109/TMTT.2008.2008267

9. Cameron, R. J., "General coupling matrix synthesis methods for Chebyshev filter functions," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 4, 433-442, 2003.
doi:10.1109/22.754877

10. Garcia-Lamperez, A., S. Llorente-Romano, M. Salazar-Palma, and T. K. Sarkar, "Efficient electromagnetic optimization of microwave filters and multiplexers using rational models," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 2, 508-521, 2004.
doi:10.1109/TMTT.2003.822021