Vol. 106
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-07-26
Plasmonic Resonant Light Scattering by a Cylinder with Radial Anisotropy
By
Progress In Electromagnetics Research, Vol. 106, 335-347, 2010
Abstract
We apply the full-wave electromagnetic theory to study electromagnetic scattering by a small cylindrical particle with radial anisotropy for normally incident light with transverse magnetic (TM) polarization. The scattering coefficients are derived, when the radial anisotropies in both the permittivity and permeability tensors are taken into account. It is shown that the surface and volume plasmon resonances can be identified by the sign of t/dq, in which εt is the permittivity element in a direction tangential to the local r-axis, and q is the size parameter. The near field distributions for surface and volume modes are illustrated by finite element method. It is found that small changes of anisotropy can affect the scattering efficiencies significantly. Moreover, the quadrupole and octupole resonant peaks may be much higher and sharper than those of dipole resonance in the scattering efficiency spectra.
Citation
Yuwen Jin, Dongliang Gao, and Lei Gao, "Plasmonic Resonant Light Scattering by a Cylinder with Radial Anisotropy," Progress In Electromagnetics Research, Vol. 106, 335-347, 2010.
doi:10.2528/PIER10060601
References

1. Tribelsky, M. I. and B. S. Luk'yanchuk, "Anomalous light scattering by small particles," Phys. Rev. Lett., Vol. 97, 263902, 2006.
doi:10.1103/PhysRevLett.97.263902

2. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, 2007.

3. Leonhardt, T., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.
doi:10.1126/science.1126493

4. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907

5. Chen, H. S., B.-I. Wu, B. L. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, 063903, 2007.
doi:10.1103/PhysRevLett.99.063903

6. Qiu, C. W., A. Novitsky, H. Ma, and S. B. Qu, "Electromagnetic interaction of arbitrary radial-dependent anisotropic spheres and improved invisibility for nonlinear-transformation-based cloaks," Phys. Rev. E, Vol. 80, 016604, 2009.
doi:10.1103/PhysRevE.80.016604

7. Qiu, C. W., L. Hu, X. Xu, and Y. Feng, "Spherical cloaking with homogeneous isotropic multilayered structures," Phys. Rev. E, Vol. 79, 047602, 2009.
doi:10.1103/PhysRevE.79.047602

8. Cheng, Y. and X. J. Liu, "Three dimensional multilayered acoustic cloak with homogeneous isotropic materials," Appl. Phys. A, Vol. 94, 25-30, 2009.
doi:10.1007/s00339-008-4882-7

9. Qiu, C. W., L. Hu, B. Zhang, B. Wu, S. Johnson, and J. Joannopoulos, "Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings," Opt. Express, Vol. 17, 13467-13478, 2009.
doi:10.1364/OE.17.013467

10. Khlebtsov, N. G., "Optics and biophotonics of nanoparticles with a plasmon resonance," Quantum Electron., Vol. 38, 504-529, 2008.
doi:10.1070/QE2008v038n06ABEH013829

11. Hulst, V. D., Light Scattering by Small Particles, Dover, 2000.

12. Kerker, M., The Scattering of the Light and Other Electromagnetic Radiation, Academic Press, 1969.

13. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Willey, 1983.

14. Born, M., Principles of Optics, 2nd edition, University Press, 1999.

15. Luk'yanchuk, B. S. and M. I. Tribelsky, "Peculiarities of light scattering by nanoparticles and nanowires near plasmon resonance frequencies in weakly dissipating materials," J. Opt. A: Pure Appl. Opt., Vol. 9, S294-S300, 2007.
doi:10.1088/1464-4258/9/9/S03

16. Luk'yanchuk, B. S. and M. I. Tribelsky, "Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies," Appl. Phys. A, Vol. 89, 259-264, 2007.
doi:10.1007/s00339-007-4099-1

17. Luk'yanchuk, B. S. and C. W. Qiu, "Enhanced scattering efficiencies in spherical particles with weakly dissipating anisotropic materials," Appl. Phys. A, Vol. 92, 773-776, 2008.
doi:10.1007/s00339-008-4572-5

18. Qiu, C. W. and B. S. Luk'yanchuk, "Peculiarities in light scattering by spherical particles with radial anisotropy," J. Opt Soc. Am. A, Vol. 25, 1623-1628, 2008.
doi:10.1364/JOSAA.25.001623

19. Luk'yanchuk, B. S. and V. Ternovsky, "Light scattering by a thin wire with a surface-plasmon resonance: Bifurcations of the poynting vector field," Phys. Rev. B, Vol. 73, 235432, 2006.
doi:10.1103/PhysRevB.73.235432

20. Monzon, J. C., "Two-dimensional scattering by a homogeneous anisotropic rod," IEEE Trans. Antennas Propag., Vol. 34, 1243-1249, 1986.
doi:10.1109/TAP.1986.1143739

21. Ren, W., X. B. Wu, Z. Yi, and W. G. Lin, "Properties of wave functions in homogeneous anisotropic media," Phy. Rev. E, Vol. 51, 671-679, 1995.
doi:10.1103/PhysRevE.51.671

22. Lucas, A. A., L. Henrard, and Ph. Lambin, "Computation of the ultraviolet absorption and electron inelastic scattering cross section of multishell fullerenes," Phys. Rev. B, Vol. 49, 2888-2896, 1994.
doi:10.1103/PhysRevB.49.2888

23. Sten, J. C. E., "DC fields and analytical image solutions for a radially anisotropic spherical conductor," IEEE Trans. Dielectr. Electr. Insul., Vol. 2, 360-367, 1995.
doi:10.1109/94.395424

24. Izotova, V. F., I. L. Maksimova, I. S. Nefedov, and S. V. Romanov, "Investigation of Mueller matrices of anisotropic nonhomogeneous layers in application to an optical model of the cornea," Appl. Optics, Vol. 36, 164-169, 1997.
doi:10.1364/AO.36.000164

25. Henrard, L. and P. Lambin, "Calculation of the eneregy loss for an electron passing near giant fullerenes," J. Phys. B, Vol. 29, 5127-5141, 1996.
doi:10.1088/0953-4075/29/21/024

26. Wu, Y., J. S. Li, Z. Q. Zhang, and C. T. Chan, "Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit," Phys. Rev. B, Vol. 74, 085111, 2006.
doi:10.1103/PhysRevB.74.085111

27. Gao, L., T. H. Fung, K. W. Yu, and C. W. Qiu, "Electromagnetic transparency by coated spheres with radial anisotropy," Phys. Rev. E, Vol. 78, 046609, 2008.
doi:10.1103/PhysRevE.78.046609

28. Gao, L. and X. Yu, "Optical bistability in nonlinear mixtures of coated inclusions with radial dielectric anisotropy," Phys. Lett. A, Vol. 335, 457-463, 2005.
doi:10.1016/j.physleta.2004.12.036

29. Yu, X. P. and L. Gao, "Nonlinear dielectric response in partially resonant composites with radial dielectric anisotropy," Phys. Lett. A, Vol. 359, 516-522, 2006.
doi:10.1016/j.physleta.2006.06.075

30. Lemelle, A., B. Veksler, I. S. Kozhevnikov, G. G. Akchurin, S. A. Piletsky, and I. Meglinski, "Application of gold nanoparticles as contrast agents in confocal laser scanning microscopy," Laser Phys. Lett., Vol. 6, 71-75, 2009.
doi:10.1002/lapl.200810091