Vol. 106
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-07-12
Design of CMOS Quadrature VCO Using on-Chip Trans-Directional Couplers
By
Progress In Electromagnetics Research, Vol. 106, 91-106, 2010
Abstract
This work presents a quadrature voltage-controlled oscillator (QVCO) realized by on-chip trans-directional (TRD) couplers. The TRD coupler is implemented by sections of parallel-coupled lines connected by shunt capacitors periodically. The TRD couplers allow decoupling the DC path between input and output. Thus, it can make connections with active circuits easier, eliminating some off-chip biasing circuits. Since the quadrature signals are generated by 90°hybrid couplers, the oscillator core can be optimized for circuit performance without considering the generation of quadrature signals. A Ka band QVCO fabricated in CMOS 0.18 μm technology was designed to verify the effectiveness of the proposed QVCO structure. The measurement results reveal that the quadrature output signals of QVCO have about -1.52 dBm output powers with less than 1 dB amplitude imbalance and less than 6°phase difference in the frequency range of 31.9 to 32.7 GHz. The best measured phase noise of the QVCO is -110.6 dBc/Hz at 1 MHz offset from the center frequency. The figure-of-merit of the circuit is 187.5 dBc/Hz.
Citation
Ching-Ian Shie, Jui-Ching Cheng, Sheng-Chun Chou, and Yi-Chyun Chiang, "Design of CMOS Quadrature VCO Using on-Chip Trans-Directional Couplers," Progress In Electromagnetics Research, Vol. 106, 91-106, 2010.
doi:10.2528/PIER10053002
References

1. Van der Tang, J., P. van de Ven, D. Kasperkovitz, and A. van Roermund, "Analysis and design of an optimally coupled 5-GHz quadrature LC oscillator," EEE J. Solid-State Circuits, Vol. 37, 657-661, May 2002.
doi:10.1109/4.997861

2. Hadziabdic, D., T. K. Johansen, V. Krozer, A. Konczykowska, M. Riet, F. Jorge, and J. Godin, "47.8 GHz InP HBT quadrature VCO with 22% tuning range," Electronics Letters, Vol. 43, No. 3, 153-154, Feb. 2007.
doi:10.1049/el:20073347

3. Chan, W. L., H. Veenstra, and J. R. Long, "A 32 GHz quadrature LC-VCO in 0.25 mm SiGe BiCMOS technology," Dig. Tech. Pap. IEEE Int. Solid-State Circuits Conf., Vol. 1, 538-616, 2005.

4. Ellinger, F. and H. Jackel, "38-43 GHz quadratureVCO on 90 nm VLSI CMOS with feedback frequency tuning," IEEE MTT-S Int. Microw. Symp. Dig., 1701-1703, Jun. 2005.
doi:10.1109/MWSYM.2005.1517042

5. Zhou, H.-F., Y. Han, S. R. Dong, and C. H. Wang, "An ultra-low-voltage high-performance VCO in 0.13-μm CMOS," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17-18, 2417-2426, 2008.
doi:10.1163/156939308787543778

6. Chen, J.-X., J. Shi, Z.-H. Bao, and Q. Xue, "A parallel-strip line differential oscillator with high suppression of second harmonics," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2219-2228, 2009.
doi:10.1163/156939309790109207

7. Ibrahim, S. H., "Design and analysis considerations of 4-GHz integrated antenna with negative resistance oscillator," Progress In Electromagnetics Research B, Vol. 13, 111-131, 2009.
doi:10.2528/PIERB08122901

8. Butt, K. A., A. E. Nadeem, and A. Hasan, "A low cost RF oscillator incorporating a folded parallel coupled resonator," Progress In Electromagnetics Research C, Vol. 9, 75-88, 2009.
doi:10.2528/PIERC09062505

9. Wood, J., T. C. Edwards, and S. Lipa, "Rotary traveling-wave oscillator arrays: A new clock technology," IEEE J. Solid-State Circuits, Vol. 36, No. 11, 1654-1665, Nov. 2001.
doi:10.1109/4.962285

10. Cho, Y.-H., M.-D. Tsai, H.-Y. Chang, C.-C. Chang, and H.Wang, "A low phase noise 52-GHz push-push VCO in 0.18-μm bulk CMOS technologies," IEEE Radio Frequency Integrated Circuits Symp. Dig., 131-134, Jun. 2005.

11. Wei, C.-C., H.-C. Chiu, and Y.-T. Yang, "A novel compact complementary colpitts differential CMOS VCO with low phase-noise performance," IEEE Radio Frequency Integrated Circuits Symp. Dig., 541-544, Jun. 2008.

12. Tsai, M. D., Y. H. Cho, and H. Wang, "A 5-GHz low phase noise differential colpitts CMOS VCO," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 5, 327-329, May 2005.
doi:10.1109/LMWC.2005.847696

13. Shie, C.-I., J.-C. Cheng, S.-C. Chou, and Y.-C. Chiang, "Transdirectional coupled-line couplers implemented by periodical shunt capacitors," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 12, 2981-2988, Dec. 2009.
doi:10.1109/TMTT.2009.2034219

14. Vogel, R. W., "Analysis and design of lumped- and lumped-distributed element directional couplers for MIC and MMIC applications," IEEE Trans. Microw. Theory Tech., Vol. 40, No. 2, 253-262, Feb. 1992.
doi:10.1109/22.120097

15. Collin, R. E., Foundations for Microwave Engineering, 2nd edition, McGraw-Hill, 1992.

16. Mongia, R., I. Bahl, and P. Bhartia, RF and Microwave Coupled-line Circuits, 2nd edition, Artech House, 2007.

17. De Castro-Galan, D., L. E. Garcia Munoz, D. Segovia-Vargas, and V. Gonzalez-Posadas, "Diversity monopulse antenna based on a dual-frequency and dual mode CRLH rat-race coupler," Progress In Electromagnetics Research B, Vol. 14, 87-106, 2009.
doi:10.2528/PIERB09030603

18. Abdalla, M. A. and Z. Hu, "On the study of left-handed coplanar waveguide coupler on ferrite substrate," Progress In Electromagnetics Research Letters, Vol. 1, 69-75, 2008.
doi:10.2528/PIERL07111808

19. Shamsinejad, S., M. Soleimani, and N. Komjani, "Novel enhanced and miniaturized 90°coupler for 3G EH mixers," Progress In Electromagnetics Research Letters, Vol. 3, 43-50, 2008.
doi:10.2528/PIERL08012702

20. Zhang, J. and X.-W. Sun, "Harmonic suppression of branch-line and rat-race coupler using complementary spilt ring resonators (CSRR) cell," Progress In Electromagnetics Research Letters, Vol. 2, 73-79, 2008.
doi:10.2528/PIERL07122702

21. "TSMC 0.18 μM mixed signal 1P6M Salicide 1.8 V/3.3V RF SPICE models,", Taiwan Semiconductor Manufacturing Co. ver1.3, Sep. 2004.

22. Ishihara, N., "Vdd gate biasing RF CMOS amplifier design technique based on the effect of carrier velocity saturation," APMC 2006, Japan, 2006.

23. Chang, Y.-C., Y.-C. Chiu, S.-G. Lin, Y.-Z. Juang, and H.-K. Chiou, "High phase accuracy on-wafer measurement for quadrature voltage-controlled oscillator," 37th European Microwave Conference, 340-343, Munich, Germany, Oct. 2007.

24. Chang, H.-Y., Y.-H. Cho, M.-F. Lei, C.-S. Lin, T.-W. Huang, and H.Wang, "A 45-GHz quadrature voltage controlled oscillator with a re°ection-type IQ modulator in 0.13-μm CMOS technology," IEEE MTT-S Int. Microw. Symp. Dig., 739-742, San Francisco, 2006.

25. Ng, A. W. L. and H. C. Luong, "A 1V 17 GHz 5mW quadrature CMOS VCO based on transformer coupling," Int. Solid-State Circuits Conf. Dig., 711-720, Feb. 2006.
doi:10.1109/ISSCC.2006.1696110

26. Hsieh, H.-H., Y.-C. Hsu, and L.-H. Lu, "A 15/30-GHz dual-band multiphase voltage-controlled oscillator in 0.18-μm CMOS," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 3, 474-483, Mar. 2007.
doi:10.1109/TMTT.2006.890518