Vol. 108
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2010-09-16
The Effect of Soil Texture in Soil Moisture Retrieval for Specular Scattering at C-Band
By
Progress In Electromagnetics Research, Vol. 108, 177-204, 2010
Abstract
The objective of this paper is to analyze the behavior of specular scattering for different soil texture fields at various soil moisture (mv) and analyze the data to retrieve the soil moisture with minimizing the effect of the soil texture. To study the soil texture effect on specular scattering 10 different soil fields were prepared on the basis of change in soil constituents (i.e, percentage of sand, silt and clay) and experiments were performed in both like polarizations (i.e., HH-polarization and VV-polarization) at various incidence angles (i.e., varying incidence angle from 25°to 70°in step of 5°). Angular response of specular scattering coefficients (σ°hh in HH-polarization and σ°vv VV-polarization) were analyzed for different soil texture fields with varying soil moisture content whereas the surface roughness condition for all the observations were kept constant. The changes in specular scattering coefficient values were observed with the change in soil texture fields with moisture for both like polarizations. Further, copolarization ratio (P=(σ°hh/σ°vv) study was performed and it was observed that the dependency of copolarization ratio for change in soil texture field at constant soil moisture is less prominent whereas the value of copolarization ratio is varying with variation of moisture content. This emphasizes that copolarization ratio may be minimizing the effect of soil texture while observing the soil moisture on specular direction. Regression analysis is carried out to select the best suitable incidence angle for observing the moisture and texture at C-band in specular direction and 60°incidence angle was found the best suitable incidence angle. An empirical relationship between P and mv was developed for the retrieval of mv and the obtained relationship gives a good agreement with observed mv. In addition, mv was also retrieved through the Kirchhoff Approximation (SA) and a comparison was made with the retrieved results of empirical relationship. The empirical relationship outperformed the SA.
Citation
Rishi Prakash, Dharmendra Singh, and Nagendra Prasad Pathak, "The Effect of Soil Texture in Soil Moisture Retrieval for Specular Scattering at C-Band," Progress In Electromagnetics Research, Vol. 108, 177-204, 2010.
doi:10.2528/PIER10050403
References

1. Satalino, G., F. Mattia, M. W. J. Davidson, T. L. Toan, G. Pasquariello, and M. Borgeaud, "On current limits of soil moisture retrieval from ERS-SAR data," IEEE Trans. Geosci. Remote Sens., Vol. 40, No. 11, 2438-2447, 2002.
doi:10.1109/TGRS.2002.803790

2. Eangman, E. T. and N. Chauhan, "Status of microwave soil moisture measurements with remote sensing," Remote Sens. Environ., Vol. 51, 189-198, 1995.
doi:10.1016/0034-4257(94)00074-W

3. Brown, R. B., "Soil texture,", University of Florida, IFAS Extension. Available: http://edis.ifas.ufl.edu/SS169, 2003.

4. Dubois, P. C., J. V. Zyl, and T. Engam, "Measuring soil moisture with imaging radars," IEEE Trans. Geosci. Remote Sens., Vol. 33, No. 4, 915-926, 1995.
doi:10.1109/36.406677

5. Davidson, M. W. J., F. Mattia, G. Satalino, N. E. C. Verhoest, T. L. Toan, M. Borgeaud, J. M. B. Louis, and E. Attema, "Joint statistical properties of RMS height and correlation length derived from multisite 1-m roughness measurements," IEEE Trans. Geosci. Remote Sens., Vol. 41, No. 7, 1651-1658, 2003.
doi:10.1109/TGRS.2003.813361

6. Paloscia, S., P. Pampaloni, S. Pettinato, and E. Santi, "A comparison of algorithms for retrieving soil moisture from ENVISAT/ASAR images," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 10, 3274-3284, 2008.
doi:10.1109/TGRS.2008.920370

7. Singh, D., "A simplistic incidence angle approach to retrieve the soil moisture and surface roughness at X-Band," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 11, 2606-2611, 2005.
doi:10.1109/TGRS.2005.856634

8. Singh, D. and A. Kathpalia, "An efficient modeling with GA approach to retrieve soil texture, moisture and roughness from ERS-2 SAR data," Progress In Electromagnetics Research, Vol. 77, 121-136, 2007.
doi:10.2528/PIER07071803

9. Mittal, G. and D. Singh, "Critical analysis of microwave scattering response on roughness parameter and moisture content for periodic rough surfaces and its retrieval," Progress In Electromagnetics Research, Vol. 100, 129-152, 2010.
doi:10.2528/PIER09091705

10. Singh, D. and V. Dubey, "Microwave bistatic polarization measurements for retrieval of soil moisture using an incidence angle approach," J. Geophys. Eng., Vol. 4, 75-82, 2007.
doi:10.1088/1742-2132/4/1/009

11. Ceraldi, E., G. Franceschetti, A. Iodice, and D. Riccio, "Estimating the soil dielectric constant via scattering measurements along the specular direction," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 2, 295-305, 2005.
doi:10.1109/TGRS.2004.841357

12. De Roo, R. D. and F. T. Ulaby, "Bistatic specular scattering from rough dielectric surfaces," IEEE Trans. Antennas Propag., Vol. 42, No. 2, 220-231, 1994.
doi:10.1109/8.277216

13. Nashashibi, A. Y. and F. T. Ulaby, "MMW polarimetric radar bistatic scattering from a random surface," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 6, 1743-1755, 2007.
doi:10.1109/TGRS.2007.894439

14. Prakash, R., D. Singh, and N. P. Pathak, "Microwave specular scattering response of soil texture at X-band," Advances in Space Research, Vol. 44, 801-814, 2009.
doi:10.1016/j.asr.2009.05.016

15. Pierdicca, N., L. Pulvirenti, F. Ticconi, and M. Brogioni, "Radar bistatic configuration for soil moisture retrieval: A simulation study," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 10, 3252-3264, 2008.
doi:10.1109/TGRS.2008.921495

16. Wu, T., K. Chen, J. Shi, H. Lee, and A. K. Fung, "A study of an AIEM model for bistatic scattering from randomly rough surface," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 9, 2584-2598, 2008.
doi:10.1109/TGRS.2008.919822

17. Krieger, G., H. Fiedler, D. Hounam, and A. Moreira, "Analysis of system concepts for bi- and multi-static SAR missions," IEEE Geoscience and Remote Sensing Symposium Proceedings, 770-772, Toulouse, France, Jul. 21-25, 2003.

18. Du, Y., Y. Qi, H. Chen, and J. A. Kong, "Bistatic scattering model for rough surfaces," IEEE Geoscience and Remote Sensing Symposium Proceedings, 2949-2952, Denver, USA, Jul. 31-Aug. 4, 2006.

19. Comblet, F., A. Khenchaf, A. Baussard, and F. Pellen, "Bistatic synthetic aperture radar imaging: Theory, simulations, and validations," IEEE Trans. Geosci. Remote Sens., Vol. 54, No. 11, 3529-3540, 2006.

20. TanDEM-X-a valuable partner for TerraSAR-X Available: http://www.infoterra.de/terrasar-x/tandem-x-mission.html.

21. Mironov, V. L., M. C. Dobson, V. H. Kaupp, S. A. Komarov, and V. N. Kleshchenko, "Generalized refractive mixing dielectric model for moist soils," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 4, 773-785, 2004.
doi:10.1109/TGRS.2003.823288

22. Hallikainen, M. T., F. T. Ulaby, M. C. Dobson, M. A. El-Rayes, and L. Wu, "Microwave dielectric behavior of wet soil-part I: Empirical models and experimental observations," IEEE Trans. Geosci. Remote Sens., Vol. 23, No. 1, 25-34, 1985.
doi:10.1109/TGRS.1985.289497

23. Wang, J. R. and T. J. Schmugge, "An empirical model for the complex dielectric permittivity of soil as a function of water content," IEEE Trans. Geosci. Remote Sens., Vol. 18, No. 4, 288-295, 1980.
doi:10.1109/TGRS.1980.350304

24. Boyarskii, D. A., V. V. Tikhonov, and N. Y. Komarova, "Model of dielectric constant of bound water in soil for applications of microwave remote sensing," Progress In Electromagnetics Research, Vol. 35, 251-269, 2002.
doi:10.2528/PIER01042403

25. Apparao, K. V. S. and V. C. S. Rao, Soil Testing-laboratory Manual and Question Bank, 18-28, Laxmi Publication, New Delhi, 1995.

26. Trebits, R. N., "Radar cross section," Radar Reflectivity Measurement: Technique and Applications, N. C. Curie, Ed., 51-59, Artech House, Norwood, MA, 1989.

27. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing --- Active and Passive, Vol. 2, 921-949, Artech House, Norwood, MA, 1982.