1. Pu, S. and J.-H. Wang, "Research on the receiving and radiating characteristics of antennas on high-speed train using integrative modeling technique," Proc. 11th Asia Pacific Microwave Conference, 1072-1075, 2009.
2. Iskander, M. F. and Z. Yun, "Propagation prediction models for wireless communication systems," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 3, 662-673, 2002.
doi:10.1109/22.989951
3., Sarkar, T. K., Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, "A survey of various propagation models for mobile communication," IEEE Antennas Propag. Mag., Vol. 45, No. 3, 51-82, 2003.
doi:10.1109/MAP.2003.1232163
4. Kara, A. and E. Yazgan, "Modelling of shadowing loss due to huge non-polygonal structures in urban radio propagation," Progress In Electromagnetics Research B, Vol. 6, 123-134, 2008.
doi:10.2528/PIERB08031209
5. Okumura, Y., E. Ohmori, T. Kawano, and K. Fukuda, "Field strength variability in VHF and UHF land mobile service," Rev. Elect. Comm. Lab., Vol. 16, No. 9-10, 825-873, 1968.
6. Landstorfer, F. M., "Wave propagation models for the planning of mobile communication networks," Proc. 29th European Microwave Conference, 1-6, 1999.
doi:10.1109/EUMA.1999.338327
7. El-Sallabi, H. M. and P. Vainikainen, "Radio wave propagation in perpendicular streets of urban street grid for microcellular communications. Part I: Channel modeling," Progress In Electromagnetics Research, Vol. 40, 229-254, 2003.
doi:10.2528/PIER02112502
8. Giampaolo, E. Di and F. Bardati, "A projective approach to electromagnetic propagation in complex environments," Progress In Electromagnetics Research B, Vol. 13, 357-383, 2009.
doi:10.2528/PIERB09012904
9. Meng, Y. S., Y. H. Lee, and B. C. Ng, "Study of propagation loss prediction in forest environment," Progress In Electromagnetics Research B, Vol. 17, 117-133, 2009.
doi:10.2528/PIERB09071901
10. Ikegami, F., S. Yoshida, T. Takeuchi, and M. Umehira, "Propagation factors controlling mean field strength on urban streets," IEEE Trans. Antennas Propag., Vol. 32, No. 8, 822-829, 1984.
doi:10.1109/TAP.1984.1143419
11. Hoppe, R., P. Wertz, F. M. Landstorfer, and G. Wolfle, "Advanced ray-optical wave propagation modelling for urban and indoor scenarios including wideband properties," Euro. Trans. Telecomms., Vol. 14, No. 1, 61-69, 2003.
12. Paran, K. and N. Noori, "Tuning of the propagation model itu-R P.1546 recommendation," Progress In Electromagnetics Research B, Vol. 8, 243-255, 2008.
doi:10.2528/PIERB08062201
13. Hattori, T., K. Abe, and K. Abe, "Analyses of propagation characteristics in future railway communication systems using 25 GHz band radio," Proc. 49th IEEE Veh. Tech. Conf., 2288-2292, 1999.
14. Nakamura, K., K. Kawasaki, and M. Shindo, "Development of methods for the calculation of radio propagation characteristics in the railway environment," Quarterly Report of Railway Technical Research Institute, Vol. 43, No. 4, 182-186, 2002.
15. Chen, Y., Z. Zhang, L. Hu, and P. B. Rapajic, "Geometrybased statistical model for radio propagation in rectangular office buildings," Progress In Electromagnetics Research B, Vol. 17, 187-212, 2009.
doi:10.2528/PIERB09080603
16. Taga, T., "Analysis for mean effective gain of mobile antennas in land mobile radio environments," IEEE Trans. Veh. Tech., Vol. 39, No. 2, 117-131, 1990.
doi:10.1109/25.54228
17. Chen, Y., Z. Zhang, and T. Qin, "Geometrically based channel model for indoor radio propagation with directional antennas," Progress In Electromagnetics Research B, Vol. 20, 109-124, 2010.
doi:10.2528/PIERB10022205
18. Chou, H.-T. and H.-T. Hsu, "Hybridization of simulation codes based on numerical high and low frequency techniques for the e±cient antenna design in the presence of electrically large and complex structures," Progress In Electromagnetics Research, Vol. 78, 173-187, 2008.
doi:10.2528/PIER07091104
19. Hsu, H.-T., F.-Y. Kuo, and H.-T. Chou, "Convergence study of current sampling profiles for antenna design in the presence of electrically large and complex platforms using FIT-UTD hybridization approach," Progress In Electromagnetics Research, Vol. 99, 195-209, 2009.
doi:10.2528/PIER09092404
20. Pu, S., J.-H. Wang, and Z. Li, "Integrative modeling and analyses of the wireless link for communication system in railway environment," Proc. 8th International Symposium on Antennas, Propagation and EM Theory, 1322-1325, 2008.
21. Sklar, B., "Rayleigh fading channels in mobile digital communication systems. Part I: Characterization," IEEE Commun. Mag., Vol. 35, No. 9, 136-146, 1997.
doi:10.1109/35.620535
22. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693
23. Gedney, S. D., "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas Propag., Vol. 44, No. 12, 1630-1639, 1996.
doi:10.1109/8.546249
24. Maloney, J. G., K. L. Shlager, and G. S. Smith, "A simple FDTD model for transient excitation of antennas by transmission lines," IEEE Trans. Antennas Propag., Vol. 42, No. 2, 289-292, 1994.
doi:10.1109/8.277228
25. Harrington, R. F., Field Computation by Moment Methods, Macmillan, 1968.
26. Wang, J.-H and H. Zhang, "Velocity compensated coplanar wave guide bend for odd-mode suppression," Microwave Opt. Technol. Lett., Vol. 50, No. 5, 1201-1204, 2008.
doi:10.1002/mop.23315
27. Zhang, H., J.-H. Wang, and W.-Y. Liang, "Study on the applicability of extracted distributed circuit parameters of non-uniform transmission lines by equivalent circuit method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5-6, 839-848, 2008.
doi:10.1163/156939308784159444
28. Yarkony, N. and N. Blaunstein, "Prediction of propagation characteristics in indoor radio communication environments," Progress In Electromagnetics Research, Vol. 59, 151-174, 2006.
doi:10.2528/PIER05090801
29. Clarke, R. H., "A statistical theory of mobile-radio reception," Bell Syst. Tech. J., Vol. 47, No. 6, 957-1000, 1968.