Vol. 14
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-05-20
W-CDMA RF Filter with 60 MHz Bandwidth Based on Parallel Connected Baw Stacked Crystal Filters
By
Progress In Electromagnetics Research Letters, Vol. 14, 171-179, 2010
Abstract
This paper presents a novel bulk acoustic wave stacked crystal filter (SCF) configuration that improves the inherent narrow bandwidth of this kind of devices and increases their selectivity by means of the allocating of transmission zeros. A set of parallel connected SCFs with their resonant frequencies split along the passband achieves the bandwidth improvement. The SCF detuning is carried out by the thickness of its middle metallic electrode. The filter response covers the 60 MHz bandwidth of a W-CDMA RF application working at 2.14 GHz. The use of SCFs considerably simplifies the layer stack configuration in contrast to other acoustically coupled structures as coupled resonator filters.
Citation
Eden Corrales, Pedro de Paco, and Oscar Menendez, "W-CDMA RF Filter with 60 MHz Bandwidth Based on Parallel Connected Baw Stacked Crystal Filters," Progress In Electromagnetics Research Letters, Vol. 14, 171-179, 2010.
doi:10.2528/PIERL10041405
References

1. Bi, F. Z. and B. P. Barber, "Bulk acoustic wave RF technology," IEEE Microwave Magazine, Vol. 9, No. 5, 65-80, Oct. 2008.
doi:10.1109/MMM.2008.927633

2. Loebl, H. P., C. Metzmacher, R. F. Milsom, P. Lok, F. van Straten, and A. Tuinhout, "RF bulk acoustic wave resonators and filters," Journal of Electroceramics, Vol. 12, No. 1-2, 109-118, Jan. 2004.
doi:10.1023/B:JECR.0000034005.21609.91

3. Weigel, R., D. P. Morgan, J. M. Owens, A. Ballato, K. M. Lakin, K. Hashimoto, and C. C. W. Ruppel, "Microwave acoustic materials, devices, and applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 738-749, Mar. 2002.
doi:10.1109/22.989958

4. Hashimoto, K., "Bulk Acoustic Wave Filters for Communications," Artech House, Norwood, MA., 2009.

5. Lakin, K. M., "Equivalent circuit modeling of stacked crystal filters," Thirty Fifth Annual Frequency Control Symposium, 257-262, 1981.

6. Lakin, K. M., "Coupled resonator filters," IEEE Ultrasonics Symposium, Vol. 1, 901-908, Oct. 2002.

7. Corrales, E., P. de Paco, O. Menendez, and , "Closed-form expressions for the design of BAW CRF acoustic inverters," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2251-2259, 2009.
doi:10.1163/156939309790416224

8. Corrales, E., P. de Paco, O. Menendez, and J. Verdu, "Design of three-pole bulk acoustic wave coupled resonator filters," 38th European Microwave Conference, 357-360, Oct. 2008.

9. Volatier, A., E. Defay, A. Nhari, J. F. Carpentier, P. Ancey, and B. Dubus, "Design, elaboration and characterization of coupled resonator filters for WCDMA applications ," IEEE Ultrasonics Symposium, 829-832, Oct. 2006.

10. Fattinger, G. G., M. R. Fattinger, K. Diefenbeck, P. Muller, and R. Aigner, "Spurious mode suppression in coupled resonator filters ," IEEE MTT-S International Microwave Symposium Digest, Vol. 9, No. 5, 4, Jun. 2005.

11. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 1, 1-10, Jan. 2003.
doi:10.1109/TMTT.2002.806937

12. Menendez, O., P. de Paco, E. Corrales, and J. Verdu, "Procedure for the design of ladder baw filters taking electrodes into account," Progress In Electromagnetics Research Letters, Vol. 7, 127-137, 2009.
doi:10.2528/PIERL09031605