Vol. 21
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-05-06
Degree of Polarization of a Twisted Electromagnetic Gaussian Schell-Model Beam in a Gaussian Cavity Filled with Gain Media
By
Progress In Electromagnetics Research B, Vol. 21, 171-187, 2010
Abstract
Analytical formula for the cross-spectral density matrix of a twisted electromagnetic Gaussian Schell-model (TEGSM) beam propagating through an astigmatic ABCD optical system in gain or absorbing media is derived based on the unified theory of coherence and polarization. Generalized tensor ABCD law in media is derived. As an application example, the evolution properties of the degree of polarization of a TEGSM beam in a Gaussian cavity filled with gain media are studied numerically in detail. It is shown that the behavior of the degree of polarization depends on the parameters of the gain media and the TEGSM beam. Our results will be useful for the spatial modulation of polarization properties of stochastic electromagnetic beam.
Citation
Shijun Zhu, and Yangjian Cai, "Degree of Polarization of a Twisted Electromagnetic Gaussian Schell-Model Beam in a Gaussian Cavity Filled with Gain Media," Progress In Electromagnetics Research B, Vol. 21, 171-187, 2010.
doi:10.2528/PIERB10041105
References

1. Mandel, L. and E. Wolf, Optical Coherence and Quantum Optics, Cambridge U. Press, 1995.

2. Kato, Y., K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, "Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression ," Phys. Rev. Lett., Vol. 53, No. 11, 1057-1060, 1984.
doi:10.1103/PhysRevLett.53.1057

3. Paganin, D. and K. A. Nugent, "Noninterferometric phase imaging with partially coherent light," Phys. Rev. Lett., Vol. 80, No. 12, 2586-2589, 1998.
doi:10.1103/PhysRevLett.80.2586

4. Wang, F., Y. Cai, H. T. Eyyuboglu, and Y. K. Baykal, "Average intensity and spreading of partially coherent standard and elegant Laguerre-Gaussian beams in turbulent atmosphere," Progress In Electromagnetics Research, Vol. 103, 33-56, 2010.

5. Cai, Y. and S. Zhu, "Ghost imaging with incoherent and partially coherent light radiation," Phys. Rev. E, Vol. 71, No. 5, 056607, 2005.
doi:10.1103/PhysRevE.71.056607

6. Cai, Y. and S. Zhu, "Ghost interference with partially coherent radiation," Opt. Lett., Vol. 229, No. 23, 2716-2718, 2004.
doi:10.1364/OL.29.002716

7. Cai, Y. and S. He, "Propagation of a partially coherent twisted anisotropic Gaussian Schell-model beam in a turbulent atmosphere," Appl. Phys. Lett., Vol. 89, No. 4, 041117, 2006.
doi:10.1063/1.2236463

8. Cai, Y. and U. Peschel, "Second-harmonic generation by an astigmatic partially coherent beam," Opt. Express, Vol. 15, No. 23, 15480-15492, 2007.
doi:10.1364/OE.15.015480

9. Zhao, C., Y. Cai, X. Lu, and H. T. Eyyuboglu, "Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle," Opt. Express, Vol. 17, No. 3, 1753-1765, 2009.
doi:10.1364/OE.17.001753

10. Gori, F., "Collet-wolf sources and multimode lasers," Opt. Commun., Vol. 34, No. 3, 301-305, 1980.
doi:10.1016/0030-4018(80)90382-X

11. Friberg, A. T. and R. J. Sudol, "Propagation parameters of Gaussian Schell-model beams," Opt. Commun., Vol. 41, No. 6, 383-387, 1982.
doi:10.1016/0030-4018(82)90161-4

12. Wang, F. and Y. Cai, "Experimental observation of fractional Fourier transform for a partially coherent optical beam with Gaussian statistics ," J. Opt. Soc. Am. A, Vol. 24, No. 7, 1937-1944, 2007.
doi:10.1364/JOSAA.24.001937

13. Simon, R., E. C. G. Sudarshan, and N. Mukunda, "Anisotropic Gaussian Schell-model beams: Passage through optical systems and associated invariants," Phys. Rev. A, Vol. 31, No. 4, 2419-2434, 1985.
doi:10.1103/PhysRevA.31.2419

14. Simon, R. and N. Mukunda, "Twisted Gaussian Schell-model beams," J. Opt. Soc. Am. A, Vol. 10, No. 1, 95-109, 1993.
doi:10.1364/JOSAA.10.000095

15. Ambrosini, D., V. Bagini, F. Gori, and M. Santarsiero, "Twisted Gaussian Schell-model beams: A superposition model," J. Mod. Opt., Vol. 41, No. 7, 1391-1399, 1994.
doi:10.1080/09500349414551331

16. A. T., E. Tervonen, J. Turunen, "Interpretation and experimental demonstration of twisted Gaussian Schell-model beams," J. Opt. Soc. Am. A, Vol. 11, No. 6, 1818-1826, 1994.
doi:10.1364/JOSAA.11.001818

17. Simon, R. and N. Mukunda, "Gaussian Schell-model beams and general shape invariance," J. Opt. Soc. Am. A, Vol. 16, No. 10, 2465-2475, 1999.
doi:10.1364/JOSAA.16.002465

18. Lin, Q. and Y. Cai, "Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams," Opt. Lett., Vol. 27, No. 4, 216-218, 2002.
doi:10.1364/OL.27.000216

19. Lin, Q. and Y. Cai, "Fractional fourier transform for partially coherent Gaussian-Schell model beams," Opt. Lett., Vol. 27, No. 19, 1672-1674, 2002.
doi:10.1364/OL.27.001672

20. Ponomarenko, S. A., "Twisted Gaussian Schell-mode solitons," Phys. Rev. E, Vol. 64, No. 3, 036618, 2001.
doi:10.1103/PhysRevE.64.036618

21. Cai, Y. and Q. Lin, "Spectral shift of partially coherent twisted anisotropic Gaussian Schell-model beams in free space," Opt. Commun., Vol. 204, No. 1-6, 17-23, 2002.

22. Cai, Y., Q. Lin, and D. Ge, "Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams in dispersive and absorbing media," J. Opt. Soc. Am. A, Vol. 19, No. 10, 2036-2042, 2002.
doi:10.1364/JOSAA.19.002036

23. Cai, Y. and Q. Lin, "Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams through misaligned optical systems," Opt. Commun., Vol. 211, No. 1-6, 1-8, 2002.
doi:10.1016/S0030-4018(02)01829-1

24. Cai, Y. and L. Hu, "Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams through an apertured astigmatic optical system," Opt. Lett., Vol. 131, No. 6, 685-687, 2006.
doi:10.1364/OL.31.000685

25. Cai, Y., Q. Lin, and O. Korotkova, "Ghost imaging with twisted Gaussian Schell-model beam," Opt. Express, Vol. 17, No. 4, 2450-2464, 2009.

26. Serna, J. and J. M. Movilla, "Orbital angular momentum of partially coherent beams," Opt. Lett., Vol. 26, No. 7, 405-406, 2001.
doi:10.1364/OL.26.000405

27. Gori, F., "Matrix treatment for partially polarized partially coherent beams," Opt. Lett., Vol. 23, No. 4, 241-243, 1998.
doi:10.1364/OL.23.000241

28. Wolf, E., "Unified theory of coherence and polarization of random electromagnetic beams," Phys. Lett. A, Vol. 312, No. 5-6, 263-267, 2003.
doi:10.1016/S0375-9601(03)00684-4

29. Wolf, E., Introduction to the Theory of Coherence and Polarization of Light, Cambridge U. Press, 2007.

30. Gori, F., M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, "Partially polarized Gaussian schell-model beams," J. Opt. A: Pure Appl. Opt., Vol. 3, No. 1, 1-9, 2001.
doi:10.1088/1464-4258/3/1/301

31. Korotkova, O., M. Salem, and E. Wolf, "Beam conditions for radiation generated by an electromagnetic Gaussian Schell-model source," Opt. Lett., Vol. 29, No. 11, 1173-1175, 2004.
doi:10.1364/OL.29.001173

32. Korotkova, O., "Scintillation index of a stochastic electromagnetic beam propagating in random media," Opt. Commun., Vol. 281, No. 9, 2342-2348, 2008.

33. Cai, Y., O. Korotkova, H. T. Eyyuboglu, and Y. Baykal, "Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere," Opt. Express, Vol. 16, No. 20, 15835-15846, 2008.
doi:10.1364/OE.16.015834

34. Korotkova, O., Y. Cai, and E. Watson, "Stochastic electromagnetic beams for LIDAR systems operating through turbulent at mosphere," Appl. Phys. B, Vol. 94, No. 4, 681-690, 2009.
doi:10.1007/s00340-009-3404-4

35. Korotkova, O., M. Salem, and E. Wolf, "The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence," Opt. Commun., Vol. 233, No. 4-6, 225-230, 2004.
doi:10.1016/j.optcom.2004.01.005

36. Shirai, T., O. Korotkova, and E. Wolf, "A method of generating electromagnetic Gaussian Schell-model beams," J. Opt. A: Pure Appl. Opt., Vol. 7, No. 5, 232-237, 2005.
doi:10.1088/1464-4258/7/5/004

37. Gori, F., M. Santarsiero, R. Borghi, and V. Ramrez-Sanchez, "Realizability condition for electromagnetic Schell-model sources," J. Opt. Soc. Am. A, Vol. 25, No. 5, 1016-1021, 2008.
doi:10.1364/JOSAA.25.001016

38. Kanseri, B. and H. C. Kandpal, "Experimental determination of electric cross-spectral density matrix and generalized Stokes parameters for a laser beam," Opt. Lett., Vol. 33, No. 20, 2410-2412, 2008.
doi:10.1364/OL.33.002410

39. Yao, M., Y. Cai, H. T. Eyyuboglu, Y. Baykal, and O. Korotkova, "The evolution of the degree of polarization of an electromagnetic Gaussian Schell-model beam in a Gaussian cavity," Opt. Lett., Vol. 33, No. 19, 2266-2268, 2008.
doi:10.1364/OL.33.002266

40. Korotkova, O., M. Yao, Y. Cai, H. T. Eyyubogu, and Y. Baykal, "The state of polarization of a stochastic electromagnetic beam in an optical resonator," J. Opt. Soc. Am. A, Vol. 25, No. 11, 2710-2720, 2008.
doi:10.1364/JOSAA.25.002710

41. Cai, Y. and O. Korotkova, "Twist phase-induced polarization changes in electromagnetic Gaussian Schell-model beams," Appl. Phys. B, Vol. 96, No. 2-3, 499-507, 2009.
doi:10.1007/s00340-009-3469-0

42. Zhao, C., Y. Cai, and O. Korotkova, "Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams," Opt. Express, Vol. 17, No. 24, 21472-21487, 2009.
doi:10.1364/OE.17.021472

43. Zhu, S. and Y. Cai, "Spectral shift of a twisted electromagnetic Gaussian Schell-model beam focused by a thin lens," Appl. Phys. B, Vol. 99, No. 1-2, 317-323, 2010.
doi:10.1007/s00340-010-3906-0

44. Youngworth, K. S. and T. G. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express, Vol. 7, No. 2, 77-87, 2000.
doi:10.1364/OE.7.000077

45. Zhan, Q., "Trapping metallic Rayleigh particles with radial polarization," Opt. Express, Vol. 12, No. 15, 3377-3382, 2004.
doi:10.1364/OPEX.12.003377

46. Sick, B., B. Hecht, and L. Novotny, "Orientational imaging of single molecules by annular illumination," Phys. Rev. Lett., Vol. 85, No. 21, 4482-4485, 2000.
doi:10.1103/PhysRevLett.85.4482

47. Novotny, L., M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett., Vol. 86, No. 23, 5251-5254, 2001.
doi:10.1103/PhysRevLett.86.5251

48. Oron, R., S. Blit, N. Davidson, and A. A. Friesem, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett., Vol. 77, No. 21, 3322-3324, 2000.
doi:10.1063/1.1327271

49. Li, J., K. I. Ueda, M. Musha, A. Shirakawa, and L. X. Zhong, "Generation of radially polarized mode in Yb fiber laser by using a dual conical prism," Opt. Lett., Vol. 31, No. 20, 2969-2971, 2006.
doi:10.1364/OL.31.002969

50. Bomzon, Z., V. Kleiner, and E. Hasman, "Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings ," Appl. Phys. Lett., Vol. 79, No. 11, 1587-1589, 2001.
doi:10.1063/1.1401091

51. Fox, A. G. and T. Li, "Resonate modes in a maser interferometer," Bell Syst. Tech. J., Vol. 40, No. 3, 453-488, 1961.

52. Wolf, E., "Spatial coherence of resonant modes in a maser interferometer," Phys. Lett., Vol. 3, No. 1, 166-168, 1963.

53. Wolf, E. and G. S. Agarwal, "Coherence theory of laser resonator modes," J. Opt. Soc. Am. A, Vol. 1, No. 5, 541-546, 1984.
doi:10.1364/JOSAA.1.000541

54. Gori, F., "Propagation of the mutual intensity through a periodic structure," Atti Fond. Giorgio Ronchi, Vol. 35, No. 4, 434-447, 1980.

55. DeSantis, P., A. Mascello, C. Palma, and M. R. Perrone, "Coherence growth of laser radiation in Gaussian cavities," IEEE J. Quantum Electron., Vol. 32, No. 5, 802-812, 1996.
doi:10.1109/3.493004

56. Palma, C., G. Cardone, and G. Cincotti, "Spectral changes in Gaussian-cavity lasers," IEEE J. Quantum Electron., Vol. 34, No. 7, 1082-1088, 1998.
doi:10.1109/3.687848

57. Wolf, E., "Coherence and polarization properties of electromagnetic laser modes," Opt. Commun., Vol. 265, No. 1, 60-62, 2006.
doi:10.1016/j.optcom.2006.02.053

58. Saastamoinen, T., J. Turunen, J. Tervo, T. Setala, and A. T. Friberg, "Electromagnetic coherence theory of laser resonator modes," J. Opt. Soc. Am. A, Vol. 22, No. 1, 103-108, 2005.
doi:10.1364/JOSAA.22.000103

59. Tong, Z., O. Korotkova, Y. Cai, H. T. Eyyuboglu, and Y. Baykal, "Correlation properties of random electromagnetic beams in laser resonators ," Appl. Phys. B, Vol. 97, No. 4, 849-857, 2009.
doi:10.1007/s00340-009-3629-2

60. Tong, Z. and O. Korotkova, "Stochastic electromagnetic beams in positive-and negative-phase materials," Opt. Lett., Vol. 35, No. 2, 175-177, 2010.
doi:10.1364/OL.35.000175

61. Collins, S. A., "Lens-system diffraction integral written in terms of matrix optics ," J. Opt. Soc. Am., Vol. 60, No. 9, 1168-1177, 1970.
doi:10.1364/JOSA.60.001168

62. Luneburg, R. K., Mathematical Theory of Optics, Chap. 4, U. California Press, Berkeley, Calif., 1964.